Людвиг Больцман: Жизнь гения физики и трагедия творца - страница 34

Шрифт
Интервал

стр.

, v>y, и v>z. Для описания системы необходимо знать 6N переменных, где N — число частиц в системе. Отметим, что перестановки частиц между собой не меняют механического состояния системы. Число таких перестановок нетрудно подсчитать. Так, если система состоит из двух частиц а и b, то число возможных перестановок равно, очевидно, двум: ab и ba. В случае трех частиц число возможных перестановок равно 6: abc, acb, bac, bca, cab, cba, четырех частиц — 24 и т.д. Коротко число возможных перестановок можно записать с помощью математического символа N! (N факториал), который расшифровывается как произведение всех натуральных чисел от 1 до N, т. е. N! = 1∙2∙3∙…∙N.

Больцман вводит в рассмотрение принципиально новую для физики величину — термодинамическую вероятность состояния системы. При ее подсчете он обращает внимание на то, что перестановки частиц, имеющих одинаковую энергию, не меняют термодинамического состояния системы. Для подсчета числа таких перестановок Больцман распределяет все частицы по группам. В первой группе находятся n>1частиц, обладающих энергиями от 0 до ε, где ε — некоторая малая порция энергии. Во второй группе находятся п>2частиц с энергиями от ε до и т.д. Такое разбиение частиц по дискретным энергетическим интервалам противоречило полученному Максвеллом и самим Больцманом непрерывному распределению частиц по энергиям, но это его не смущало. Вводя малую порцию энергии ε, он не придавал ей какого-либо физического смысла. Он рассматривал ее лишь как формальный математический прием, по его словам, «полезную функцию». К тому же в ходе дальнейшего исследования он устремлял ε к нулю, приходя, таким образом, к непрерывному распределению частиц по энергиям.

Разбиение частиц на определенные энергетические интервалы позволило Больцману подсчитать число перестановок частиц внутри каждого интервала. Очевидно, что внутри первого интервала их будет n>1!, второго — n>2! и т. д. Так как такие перестановки не меняют термодинамического состояния системы, то для определения термодинамической вероятности состояния Больцман предлагает исключить их из полного числа перестановок N!. Таким образом, Больцман определяет термодинамическую вероятность состояния системы W как

W = N!/(n>1!∙n>2! ...).

Максимум значения W соответствует, очевидно, наиболее вероятному состоянию системы. При расчете этого максимума необходимо учитывать следующие очевидные условия:

n>1 + n>2 + … = ∑>ini = N = const (*)

(сумма частиц, входящих в энергетические интервалы, равна полному числу частиц в системе) и

ε>1n1 + ε>2n2 + … = ∑>iεini = E = const (**)

где Е — полная энергия системы, ε>iэнергия частицы, находящейся в i-м энергетическом интервале.

Так как n>1!, n>2! велики, Больцман заменяет значения факториалов на их приближенные значения, пользуясь формулой Стирлинга:

где e — основание натуральных логарифмов (е = 2,718…). При этом термодинамическая вероятность состояния системы равна

Максимум W Больцман ищет для ее логарифма:

Так как N∙lnN — величина постоянная для данной системы, то задача сводится к отысканию максимума выражения

Если учесть, что

n>i ~ f(ε>i)

где f — функция распределения частиц по энергиям, то последнее выражение можно переписать в виде

или (при ε → 0) в интегральной форме

Находя максимум этого выражения в сочетании с условиями (*) и (**), Больцман показал, что наиболее вероятному состоянию газа соответствует равновесная функция распределения (12). Выражение для lnW с точностью до постоянной равно ранее введенной величине H, взятой с обратным знаком. Поскольку H, как мы уже знаем, пропорциональна энтропии идеального газа, Больцман пришел к выводу, имеющему громадное физическое значение: энтропия системы S пропорциональна логарифму термодинамической вероятности данной системы:

S ~ ln W. (14)

Полученные Больцманом результаты имеют фундаментальное значение. Приближение газа к состоянию с максимальной энтропией есть не что иное, как переход газа из состояния с малой вероятностью в наиболее вероятное состояние. Энтропия имеет вероятностную, статистическую природу. Предельно четко и уверенно пишет об этом сам Больцман:


стр.

Похожие книги