Вопрос этот интересен, конечно, и сам по себе. Подобные принципы возбуждают воображение, и всегда стоит попробовать выяснить, насколько они общи. Но мне необходимо это знать и по более практической причине. Вместе с несколькими коллегами я опубликовал работу, в которой с помощью квантовой механики мы примерно рассчитали электрическое сопротивление, испытываемое электроном, пробирающимся сквозь ионный кристалл, подобный NaCl. [Статья об этом была напечатана в Physical Review, 127,1004 (1962) и называется «Подвижность медленных электронов в полярных кристаллах».] Но если бы существовал принцип минимума, мы могли бы воспользоваться им, чтобы сделать результат намного более точным, аналогично тому как принцип минимума емкости конденсатора позволил нам добиться столь высокой точности для емкости, хотя об электрическом поле наши сведения были весьма неточными.
* Эта лекция никак не связана со всем остальным. Она прочитана лишь для того, чтобы отвлечься от основной темы и немного передохнуть. (Перевод надписей, сделанных на доске, приведен около рисунков, над стрелками.— Прим. ред.)
Глава 20
РЕШЕНИЯ УРАВНЕНИЙ МАКСВЕЛЛА В ПУСТОМ ПРОСТРАНСТВЕ
§ 1. Волны в пустом пространстве; плоские волны
§ 2. Трехмерные волны
§ 3. Научное воображение
§ 4. Сферические волны
Повторить: гл. 47 (вып. 4) «Звук, Волновое уравнение»; гл. 28 (вып. 3) «Электромагнитное излучение»
§ 1. Волны в пустом пространстве; плоские волны
В гл. 18 мы достигли того, что уравнения Максвелла появились в полном виде. Все, что есть в классической теории электрических и магнитных полей, вытекает из четырех уравнений:
Когда мы свели все эти уравнения воедино, мы обнаружили новое знаменательное явление: поля, создаваемые движущимися зарядами, могут покинуть источник и отправиться путешествовать в пространстве. Мы рассмотрели частный случай, когда внезапно включается целая бесконечная плоскость. После того как в течение времени t шелток, возникают однородные электрические и магнитные поля, простирающиеся от плоскости на ct. Предположим, что по плоскости yzтечет ток в направлении +yс поверхностной плотностью J. Электрическое поле будет иметь только y-компоненту, а магнитное — только z-компоненту. Величина компонент поля будет равна
(20.2)
для положительных x, меньших ct. Для больших xполя равны нулю. Равные по величине поля простираются на то же расстояние от плоскости в направлении отрицательных y. На фиг. 20.1 показан график зависимости величины полей от x в момент t. С течением времени «волновой фронт» в ctраспространяется вдоль х с постоянной скоростью с.
Фиг. 20.1. Зависимость электрического и магнитного полей от х через tсек после того, как была включена заряженная плоскость.
Теперь представим себе такую последовательность событий. На мгновение мы включаем ток единичной силы, а затем внезапно увеличиваем его силу втрое и поддерживаем его на этом уровне. Как же будут теперь выглядеть поля? Это можно узнать таким образом. Во-первых, надо представить ток с единичной силой, включенный при t=0 и больше не менявшийся. Тогда поля при положительных х будут иметь вид, представленный на фиг. 20.2, а. Затем надо задать себе вопрос, что произойдет, если в момент t>1 включить постоянный ток силой в две единицы?
В этом случае поля станут вдвое больше, чем прежде, но отойдут по х только на промежуток c(t-t>1) (фиг. 20.2, б). Складывая эти два решения (по принципу суперпозиции), мы получаем, что сумма источников — это ток силой в одну единицу с момента нуль до момента t>1и ток в три единицы в более поздние моменты. В момент tполя меняются вдоль х так, как показано на фиг. 20.2, в.
Возьмем теперь более сложную задачу. Рассмотрим ток, имевший сначала силу в одну единицу, а затем достигший силы в три единицы и выключенный. Каковы будут поля от такого тока? Решение можно получить точно так же, как и раньше,
Фиг. 20.2. Электрическое поле плоскости с током.
а — одна единица тока включена в момент t=0; б—две единицы тока включены в момент t=t>1; в — суперпозиция а и б.
Фиг. 20.3. Если сила источника тока меняется так, как на рисунке (а), то в момент