Лекции по физике 5 - страница 14
(2.30)
а это не число, а все еще какой-то оператор. Однако в согласии с алгеброй векторов ТСпо-прежнему можно называть вектором.
А сейчас помножим С на скаляр с другой стороны. Получится произведение СT. В обычной алгебре
(2.31)
но нужно помнить, что операторная алгебра немного отличается от обычной векторной. Надо всегда выдерживать правильный порядок операторов, чтобы их операции имели смысл. Тогда у вас трудностей не возникнет, если вы припомните, что оператор yподчиняется тем же условиям, что и производные. То, что вы дифференцируете, должно быть поставлено справа от С Порядок здесь существен.
Если помнить о порядке, то сразу ясно, что ТС — это оператор, а произведение СТ — это уже не «жаждущий» оператор, его жажда утолена. Это физическая величина, имеющая смысл. Он представляет собой скорость пространственного изменения Т: x-компонента СТ показывает, насколько быстро Т изменяется в
x-направлении. А куда направлен вектор СТ? Мы знаем, что скорость изменения Т в каком-то направлении — это компонента СТ в этом направлении [см. (2.15)]. Отсюда следует, что направление СТ — это то, по которому СТ обладает самой длинной проекцией; иными словами, то, по которому СТ меняется быстрее всего. Направление градиента Т — это направление быстрейшего подъема величины Т.
§ 5. Операции с С
Можно ли с векторным оператором С производить другие алгебраические действия? Попробуем скомбинировать его с вектором. Из двух векторов можно составить скалярное произведение, причем двоякого рода:
(Вектор)·С или С· (Вектор).
Первое выражение пока что ничего не означает — это все еще оператор. Окончательный смысл его зависит от того, на что он Судет действовать. А второе произведение — это некое скалярное поле (потому что А·В — всегда скаляр).
Попробуем составить скалярное произведение С на известное поле, скажем на h. Распишем покомпонентно
(2.32)
(2.33)
Эта сумма инвариантна относительно преобразования координат. Если выбрать другую систему (отмеченную штрихами), то получилось бы
(2.34)
а это — то же самое число, которое получилось бы и из (2.33), хотя с виду оно выглядит иначе, т. е.
(2.35)
в любой точке пространства. Итак, С·h — это скалярное поле, и оно должно представить собой некоторую физическую величину. Вы должны понимать, что комбинация производных в С·h имеет довольно специальный вид. Могут быть и другие комбинации всяческого вида, скажем dh>y/dx, которые не являются ни скалярами, ни компонентами векторов.
Скалярная величина С· (Вектор) очень широко применяется в физике. Ей присвоили имя «дивергенция», или «расходимость». Например,
С·h = div h = «Дивергенция h». (2.36)
Можно было бы, как и для СT, описать физический смысл С·h. Но мы отложим это до лучших времен.
Посмотрим сначала, что еще можно испечь из векторного оператора С. Как насчет векторного произведения? Можно надеяться, что
(2.37)
Компоненты этого вектора можно написать, пользуясь обычным правилом для векторного произведения [см. (2.2)]:
(2.38)
Подобно этому,
(2.39)
(2.40)
Комбинацию СXh называют «ротор» (пишут rot h), или (редко) «вихрь h» (пишут curl h). Происхождение этого названия и физический смысл комбинации мы обсудим позже.
В итоге мы получили три сорта комбинаций, куда входит С:
СТ = grad T =Вектор,
С·h=divh = Скаляр,
СXh = roth = Вектор.
Используя эти комбинации, можно пространственные вариации полей записывать в удобном виде, т. е. в виде, не зависящем от той или иной совокупности осей координат.
В качестве примера применения нашего векторного дифференциального оператора С выпишем совокупность векторных уравнений, в которой содержатся те самые законы электромагнетизма, которые мы словесно высказали в гл. 1. Их называют уравнениями Максвелла.
Уравнения Максвелла
(2.41)
где r (ро) — «плотность электрического заряда» (количество заряда в единице объема), a j — «плотность электрического тока» (скорость протекания заряда сквозь единицу площади). Эти четыре уравнения содержат в себе законченную классическую теорию электромагнитного поля. Видите, какой элегантной и простой записи мы добились с помощью наших новых обозначений!