Лекции по физике 4 - страница 7

Шрифт
Интервал

стр.

Очень трудно рассчитать движение поршня во всех деталях; хотя все это очень легко понять, оказывается, что проанализи­ровать это несколько труднее. Прежде чем приступить к такому анализу, решим другую задачу: пусть ящик заполнен молеку­лами двух сортов с массами m>1и m>2, скоростями v>1и v>2 и т. д.; теперь молекулы смогут познакомиться поближе. Если сначала все молекулы № 2 покоятся, то долго это продолжаться не может, потому что о них будут ударять молекулы № 1 и сооб­щать им какую-то скорость. Если молекулы № 2 могут двигать­ся значительно быстрее, чем молекулы № 1, то все равно рано или поздно им придется отдать часть своей энергии более медленным молекулам. Таким образом, если ящик заполнен смесью двух газов, то проблема состоит в определении относительной скорости молекул обоих сортов.

Это тоже очень трудная задача, но мы все-таки решим ее. Сначала нам придется решить «подзадачу» (опять это один из тех случаев, когда, независимо от того как решается задача, окончательный результат запоминается легко, а вывод требует большого искусства). Предположим, что перед нами две стал­кивающиеся молекулы, обладающие разными массами; во из­бежание осложнений мы наблюдаем за столкновением из сис­темы их центра масс (ц. м.), откуда легче уследить за ударом молекул. По законам столкновений, выведенным из законов сохранения импульса и энергии, после столкновения молекулы могут двигаться только так, что каждая сохраняет величину своей первоначальной скорости, и изменить они могут только направление движения. Типичное столкновение выглядит так, как его изобразили на фиг. 39.3.


Фиг. 39. 3. Столкновение двух неодинаковых молекул, если смот­реть из системы центра масс.

Предположим на минутку, что мы наблюдаем столкновения, системы центра масс которых покоятся. Кроме того, надо предположить, что все молекулы движутся горизонтально. Конечно, после первого же столкнове­ния часть молекул будет двигаться уже под каким-то углом к исходному направлению. Иначе говоря, если вначале все молекулы двигались горизонтально, то спустя некоторое вре­мя мы обнаружим уже вертикально движущиеся молекулы. После ряда других столкновений они снова изменят направле­ние и повернутся еще на какой-то угол. Таким образом, если кому-нибудь и удастся сначала навести порядок среди моле­кул, то все равно они очень скоро разбредутся по разным на­правлениям и с каждым разом будут все больше и больше распыляться. К чему же это в конце концов приведет? Ответ: Любая пара молекул будет двигаться в произвольно выбранном направлении столь же охотно, как и в любом другом. После этого дальнейшие столкновения уже не смогут изменить распределе­ния молекул.

Что имеется в виду, когда говорят о равновероятном дви­жении в любом направлении? Конечно, нельзя говорить о вероятности движения вдоль заданной прямой — прямая слишком тонка, чтобы к ней можно было относить вероятность, а следует взять единицу «чего-нибудь». Идея заключается в том, что через заданный участок сферы с центром в точке столк­новения проходит столько же молекул, сколько через любой другой участок сферы. В результате столкновений молекулы распределяются по направлениям так, что любым двум равным по площади участкам сферы будут соответствовать равные ве­роятности (т. е. одинаковое число прошедших через эти участки молекул).

Между прочим, если мы будем сравнивать первоначальное направление и направление, образующее с ним какой-то угол 0, то интересно, что элементарная площадь на сфере единичного радиуса равна произведению 2p на sinqdq, или, что то же самое, на дифференциал cosq. Это означает, что косинус угла 9 между двумя направлениями с равной вероятностью принимает лю­бое значение между -1 и +1.

Теперь нам надо вспомнить о том, что имеется на самом деле; ведь у нас нет столкновений в системе центра масс, а сталки­ваются два атома с произвольными векторными скоростями v>1 и v>2. Что происходит с ними? Мы поступим так: снова перей­дем к системе центра масс, только теперь она движется с «ус­редненной по массам» скоростью v>ц.м.=(m>1v>1+m


стр.

Похожие книги