Квантовая вселенная. Как устроено то, что мы не можем увидеть - страница 57

Шрифт
Интервал

стр.

, и его размер будет равняться √20 %. Теперь можно сформулировать новое квантовое правило: оно гласит, что мы должны связать отдельный циферблат с целым процессом, то есть будет существовать циферблат с размером, квадрат которого будет равен вероятности нахождения электрона 1 в точке А и электрона 2 в точке В. Иными словами, верхней иллюстрации на рис. 7.3 будет соответствовать свой циферблат. Мы видим, что этот циферблат должен иметь размер, равный √9 %, поскольку именно с этой вероятностью происходит процесс. Но какое время он будет показывать? Ответ на этот вопрос будет дан в главе 10, и он связан с идеей умножения циферблатов. Для целей же этой главы знать время необязательно; понадобится лишь только что сформулированное новое важное правило, которое стоит даже повторить, потому что оно существенно для всей квантовой теории: мы должны связать одиночный циферблат со всеми возможными способами, которыми может идти весь процесс. Циферблат, который мы связываем с нахождением одиночной частицы в конкретном месте, – это простейшая иллюстрация нашего правила, и до этого места в книге мы уже продвинулись. Но это особый случай, и раз уж мы начали рассматривать более одной частицы, то правило нуждается в расширении. Это значит, что с верхней иллюстрацией на рисунке связан циферблат размером 0,3. Точно так же есть и второй циферблат размером 0,1 (потому что 0,12 – это 0,01, то есть 1 %), связанный с нижней иллюстрацией на рисунке. Таким образом, у нас есть два циферблата, и нужно найти способ использовать их для определения вероятности найти один электрон в точке А и другой в точке В. Если бы эти два электрона можно было отличить друг от друга, ответ был бы очевидным: мы просто сложили бы вероятности (но не циферблаты), связанные с каждой возможностью. У нас получился бы ответ – 10 %.

Но если нет никакого способа определить, какой из изображенных на диаграммах процессов произошел в действительности – что справедливо, если электроны неотличимы друг от друга, – то, следуя логике, которую мы разработали для скачков одиночной частицы из точки в точку, нужно складывать именно циферблаты. Мы стоим на пороге обобщения правила, утверждающего, что для одной частицы нужно складывать циферблаты, связанные со всеми различными способами достижения этой частицей определенной точки, чтобы определить вероятность нахождения частицы в этой конкретной точке. Для системы, состоящей из множества идентичных частиц, нужно сочетать все циферблаты, связанные со всеми возможными способами, которыми эти частицы могут попасть в свои конечные пункты, чтобы определить вероятность их нахождения в этих конечных пунктах. Это достаточно важное положение, чтобы перечитать его несколько раз: должно быть ясно, что этот новый закон сочетания циферблатов служит обобщением закона, который мы использовали для одиночной частицы. Однако вы могли заметить, что мы очень тщательно выбираем термины. Мы не сказали, что циферблаты нужно обязательно складывать: мы говорим, что их нужно сочетать. И для такой оговорки есть причины.

Самым простым на вид было бы действительно сложить циферблаты. Но прежде чем заняться этим, надо спросить себя, каковы, собственно, основания считать это действие правильным. Это хороший пример того, что в физике не все стоит считать само собой разумеющимся: проверка предположений часто ведет к новым идеям, как и в этом случае. Сделаем шаг назад и подумаем о чем-то как можно более общем – например, представим, что один циферблат переводится или сжимается (или расширяется) до общего сложения циферблатов. Рассмотрим эту возможность более подробно.

Мы говорим: «У меня есть два циферблата, и я хочу сочетать их, чтобы получился один, и я мог с его помощью узнать, какова вероятность нахождения двух электронов в точках А и В. Как мне их сочетать?» Не будем забегать вперед с ответом, потому что хотим понять, действительно ли стоит воспользоваться сложением циферблатов. Оказывается, мы не очень-то свободны в действиях, и, как ни странно, простое сложение циферблатов – это одна из всего


стр.

Похожие книги