Квантовая вселенная. Как устроено то, что мы не можем увидеть - страница 54

Шрифт
Интервал

стр.


Рис. 7.2. Заполнение энергетических уровней криптона. Точки символизируют электроны, а горизонтальные линии – энергетические уровни, помеченные квантовыми числами n, l и m. Мы сгруппировали уровни с различными значениями m, но одинаковыми значениями n и l


Чтобы изложенное относилось к науке, а не к занимательной математике, предстоит сделать несколько пояснений. Во-первых, нужно объяснить, почему химические свойства элементов из одного и того же вертикального столбца схожи. Из нашей схемы ясно, что первый элемент каждого из трех первых рядов начинает процесс заполнения уровней с увеличивающимся значением n. А именно: водород открывает этот процесс, вводя единственный электрон на пустой до того момента уровень n = 1, с лития начинается второй ряд – первый электрон появляется на пустом до того уровне n = 2, а с натрия третий ряд – электрон занимает пустой до того уровень n = 3. Третий ряд немного выбивается, потому что на уровне n = 3 может находиться 18 электронов, а в самом третьем ряду все же не 18 элементов. Можно предположить, что именно происходит: первые 8 электронов заполняют уровни n = 3 с l = 0 и l = 1, а затем (по каким-то причинам) случается переход на четвертый ряд. Четвертый ряд содержит оставшиеся 10 электронов на уровнях n = 3 с l = 2 и 8 электронов на уровнях n = 4 с l = 0 и l = 1. То, что ряды не совсем соответствуют значению n, свидетельствует лишь о том, что связь между химией и подсчетом энергетических уровней не так проста, как можно было бы подумать. Однако сейчас известно, что калий и кальций, два первых элемента в четвертом ряду, имеют электроны на уровне n = 4, l = 0, а следующие 10 элементов (от скандия до цинка) имеют электроны на запоздалых уровнях n = 3, l = 2.

Чтобы понять, почему заполнение уровней n = 3 и l = 2 откладывается до скандия, нужно объяснить, почему уровни n = 4, l = 0, на которых находятся электроны в калии и кальции, обладают меньшей энергией, чем уровни n = 3, l = 2.

Помните, что «основное состояние» атома будет характеризоваться конфигурацией электронов с самой низкой энергией, поскольку в любом возбужденном состоянии атом будет всегда терять энергию при испускании фотона. И говоря, что «этот атом содержит такие-то электроны, находящиеся на таких-то энергетических уровнях», мы сообщаем вам конфигурацию электронов с самой низкой энергией. Конечно, мы еще не пытались подсчитывать энергетические уровни, так что пока не можем и расположить их по возрастанию или убыванию энергии. Подсчитать разрешенную для электрона энергию для атомов более чем с двумя электронами на самом деле очень сложно, и даже случай для двух электронов (атом гелия) не так-то прост. Предположение о ранжировании уровней по увеличению числа n – результат гораздо более простых расчетов по атому водорода, для которого верно, что уровень n = 1 обладает наименьшей энергией, за ним следуют уровни n = 2, потом уровни n = 3 и т. д.

Очевидный вывод из сказанного – элементы на правом краю периодической таблицы соответствуют атомам, множество уровней которых заполнено до конца. Например, для гелия заполнен уровень n = 1, для неона – уровень n = 2, у аргона плотно заселен уровень n = 3, по крайней мере для l = 0 и l = 1. Мы можем еще немного развить эти идеи, таким образом поняв ряд очень важных положений в химии. К счастью, мы пишем не учебник по химии, так что можно говорить кратко. Может показаться, что мы пытаемся уложить всю тему в один абзац, но все же попробуем.

Основное наблюдение в том, что атомы могут скрепляться, обмениваясь электронами: мы встретимся с этой идеей в следующей главе, когда будем разбираться, как пара атомов водорода соединяется в молекулу водорода. Общее правило таково: элементы «предпочитают» полностью заполнять все свои энергетические уровни. В случае с гелием, неоном, аргоном и криптоном уровни уже заполнены, так что этим элементам уже «хорошо»: им «неинтересно» реагировать с другими. Другие же элементы могут «пытаться» заполнить свои уровни, обмениваясь электронами с другими элементами. Водороду, например, нужен один дополнительный электрон для заполнения уровня


стр.

Похожие книги