Квантовая случайность. Нелокальность, телепортация и другие квантовые чудеса - страница 2
Среди многих популярных изложений последних достижений квантовой физики книга Николя Жизана подчеркивает ключевую роль фундаментальной квантовой случайности, не будь которой, мы бы могли рассчитывать на изобретение сверхсветового телеграфа. Если это научно-фантастическое изобретение когда-нибудь воплотится в жизнь, нам придется радикально пересмотреть все, что мы знаем о физике. Я совсем не имею в виду, что существуют неприкасаемые и непреложные физические законы, неподвластные никакому пересмотру. Совсем наоборот, лично я уверен, что каждая физическая теория однажды будет заменена другой теорией большего масштаба. Но некоторые из теорий настолько фундаментальны, что их пересмотр влечет за собой концептуальную революцию с далеко идущими последствиями. И хотя нам всем известны несколько примеров таких переворотов в истории человечества, они тем не менее столь исключительны, что к ним не следует относиться спокойно. В этом контексте объяснение, почему квантовая нелокальность, какой бы сверхъестественной она ни казалась, не может низвергнуть принцип релятивистской причинности, который запрещает сверхсветовую коммуникацию, кажется мне очень важной темой в книге Николя Жизана.
Тот факт, что эта книга занимает определенную позицию по этому вопросу, вразрез с другими популярными взглядами, неудивителен. Николя Жизан является одним из ключевых игроков в новой квантовой революции, которая произошла в последней четверти ХХ столетия.
Первая квантовая революция, в начале ХХ века, основывалась на открытии корпускулярно-волнового дуализма. Это открытие дало способ довольно точно описать статистическое поведение атомов, из которых состоит материя, облаков электронов, которые переносят электрический ток в металле или полупроводнике, и миллиардов и миллиардов фотонов в луче света. У нас появился инструментарий для понимания механических свойств твердых тел, в то время как классическая физика не могла объяснить, почему вещество, состоящее из положительных и отрицательных зарядов, которые притягивают друг друга, не сплющивается. Квантовая механика дала точное количественное описание электрических и оптических свойств материалов и предложила систему концепций, необходимую для описания таких удивительных явлений, как сверхпроводимость и странные свойства определенных элементарных частиц. В эту первую квантовую революцию физики изобрели новые приборы: транзистор, лазер, интегральные схемы, благодаря чему сегодня мы живем в информационном обществе.
Но уже к 1960-м годам физики начали задавать новые вопросы, которые в первую квантовую революцию оставались за кадром:
• Как можно применять квантовую физику, если все ее предсказания носят чисто статистический характер и относятся к отдельным микроскопическим объектам?
• Те невероятные свойства запутанных пар квантовых объектов (которые были описаны в 1935 году в работе об ЭПР-парадоксе, но ни разу не наблюдались в действительности), они действительно соответствуют реальному поведению природы или в этом вопросе мы достигли пределов квантовой механики?
Именно ответы на эти вопросы, которые сначала дали экспериментаторы, а потом уточнили теоретики, привели ко второй, продолжающейся по сей день квантовой революции[1].
Поведение отдельных квантовых объектов давно являлось предметом оживленных дебатов среди физиков. В течение долгого времени большая часть ученого сообщества считала, что сам вопрос не имеет смысла и что он в любом случае неважен, так как никто не мог себе представить, что можно наблюдать отдельный квантовый объект, не говоря уже о том, чтобы управлять и манипулировать им. По словам Эрвина Шрёдингера