Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи - страница 46

Шрифт
Интервал

стр.

и определяемых с точностью до произвольного поворота относительно молекулярной оси. В ряду молекул N>2, CO, BF характер трех эквивалентных связывающих МО b>i монотонно меняется от строго ковалентного для N>2 до существенно поляризованного в направлении атома фтора для молекулы BF. В последнем случае они подобны неподеленным парам атома фтора.

Таблица 5. Орбитали Эдмистона-Рюденберга в молекулах N>2, CO и BF

Практическая реализация метода Эдмистона-Рюденберга предполагает использование формализма самосогласованного поля и вычисление большого числа двухэлектронных интегралов, что представляет довольно сложную математическую задачу. Количество таких интегралов, как и время, необходимое для максимизации J>(1) (или минимизации J>(2) и К), очень быстро растет с увеличением числа электронов в системе и числа базисных АО, используемых для представления МО.

Следует отметить также, что метод Эдмистона и Рюденберга, строго говоря, не гарантирует соответствия между локализованными МО и отдельными атомами или связями. Впрочем, это обстоятельство может рассматриваться не только как недостаток, но и как достоинство метода, поскольку он допускает в принципе представление МО в базисе, существенно отличающемся от многоцентрового базиса АО.

В вычислительном отношении более удобным, чем метод Эдмистона-Рюденберга, является метод Бойса [31]. В качестве критерия, определяющего степень локализации МО, в этом методе используется сумма квадратов расстояний (R>i) между центрами тяжести орбиталей:

(4.34)

где

(4.35)

Локализованные по Бойсу МО характеризуются максимальным разделением в пространстве по критерию В и одновременно минимальными среднеквадратическими радиусами, точнее минимальным значением суммы их квадратов:

(4.36)

Недостатком метода Бойса является то, что он не обеспечивает эффективного разделения валентных и остовных АО. Например, 1s- и 2s-орбитали сферически-симметричны и никаким преобразованием нельзя изменить расстояния между их центрами тяжести (которое всегда равно нулю). С другой стороны, смешение остовной 1s-орбитали с валентными np-орбиталями должно приводить к увеличению расстояния от нулевого до некоторого конечного (для гибридных АО) значения. Максимуму значения В при этом должна соответствовать тетраэдрическая гибридизация 1s- и nр-АО. В действительности наряду с остовной 1s-орбиталью следует принимать во внимание и валентную ns-AO. Именно она должна смешиваться с другими валентными АО. Но с учетом сказанного выше ясно, что метод Бойса может приводить к завышенному вкладу остовных АО в связывающие МО.

Метод проецирования. Метод проецирования, предложенный в работах Полака [73] и позднее развитый Роби [74], основан на том, что одноэлектронная матрица плотности ρ>1(x|x') в однодетерминантном приближении является ядром оператора проектирования на подпространство занятых молекулярных спин-орбиталей. Поэтому для любой нормированной спин-орбитали ψ проекционная норма

(4.37)

удовлетворяет неравенству

(4.38)


причем

если спин-орбиталь ψ целиком принадлежит подпространству занятых молекулярных спин-орбиталей, и
если спин-орбиталь ψ ортогональна к этому подпространству.

Следуя Полаку, локализованную на атоме А МО, описывающую неподеленную электронную пару или орбиталь внутренней оболочки атома, можно определять как линейную комбинацию орбиталей атома А (т. е. как гибридную АО этого атома):

(4.39)

максимизирующую проекционную норму

. Если бесспиновая одноэлектронная матрица плотности ρ(r|r') представлена в базисе АО g матрицей

(4.40)

и базис g характеризуется матрицей перекрывания S, причем S'>a = 0 для а, а' ∈ А, то столбец U>a, представляющий искомую гибридную АО h>a, является собственным вектором матрицы Q>(A) образуемой матричными элементами (SPS)>aa' ∈ А, и этот собственный вектор отвечает максимальному собственному значению n. Когда последнее равно двум, гибридная АО h>a будет в точности совпадать с естественной МО, описывающей неподеленную электронную пару; когда n>a ≈ 2, гибридная АО h>a будет аппроксимировать такую орбиталь.

Двух-, трех- ... и K-центровые МО, локализованные на атомных группах (связях) G = (A


стр.

Похожие книги