Первым, кто поставил проблему поиска рациональных решений в ее современном смысле, был великий французский математик Анри Пуанкаре. Пуанкаре сделал для развития математики (в том числе алгебраической геометрии) и физики очень многое. О других его достижениях у нас еще будет повод поговорить, ведь именно он сформулировал одну из «задач на миллион», в его честь и названную гипотезой Пуанкаре.
Брайан Берч (Bryan Birch) и Питер Свиннертон-Дайер (Peter Swinnerton-Dyer) (да-да, Берч-Свиннертон-Дайер - это два человека, а не три) занимались этой проблемой в начале шестидесятых. Примечательно, что у истоков гипотезы стоит один из ранних компьютеров - кембриджский EDSAC, с помощью которого Берч и Свиннертон-Дайер исследовали поведение так называемых эллиптических кривых (что это такое, поясним чуть позже).
Суть

Итак, в чем же суть проблемы, о которой мы сегодня рассказываем? Рассмотрим кривую, заданную полиномиальным уравнением с двумя переменными. Одна из важнейших характеристик такой кривой - ее род (genus). Дать здесь классическое определение рода кривой будет трудно, но мы приблизимся к нему с другой стороны. Начнем с поверхностей. Наверное, каждый в детстве читал о топологах, которые не могут отличить кружку от бублика - ведь обе поверхности топологически эквивалентны тору. Так вот, у поверхностей тоже есть род; род бублика, например, равен единице. А вообще род поверхности (если быть точным, род «ориентируемой поверхности») - это количество замкнутых кривых, по которым ее можно разрезать так, чтобы она не распалась на отдельные части. Можете сами попробовать: сферу или плоскость так разрезать нельзя, у них род 0, тор (он же бублик[]) можно разрезать один раз, хоть вдоль, хоть поперек, но после этого останется либо цилиндр, либо кусок плоскости, и второго разреза уже не получится. Все ориентируемые поверхности похожи на сферу с ручками (термин из алгебраической геометрии): сколько у сферы ручек, столько и разрезов можно сделать.
Теперь представьте, что уравнение, которое нас интересует, нужно решать в комплексных числах. Тогда множество его решений - это двухмерная поверхность. Ее род в данном случае и называется родом кривой.
Итак, род представляет собой целое неотрицательное число; кривые рода 1 - это и есть эллиптические кривые, которые сейчас находят применение в криптографии. О них и идет речь в гипотезе Берча-Свиннертон-Дайера. Кстати, если ограничиться вещественными числами, эллиптические кривые определяются совсем просто: это кривые, заданные одним из уравнений Вейерштрасса y

Как уже упоминалось, гипотеза касается множества рациональных решений данного уравнения. Берч и Свиннертон-Дайер рассматривали функцию L, вычисляемую через количество рациональных решений по модулю простого числа p (в вещественном случае - количество решений уравнения y2 #8801; x3 + ax +b по модулю p). Функция эта строится аналогично дзета-функции Римана, о которой мы уже рассказывали, и свойства имеет соответствующие: L, если рассмотреть ее как функцию комплексного переменного, сходится на полуплоскости, но при этом аналитически продолжается и на другую половину. Вычислить значения L и ее аналитического продолжения для каждой конкретной кривой не очень просто, но вполне возможно; в частности, это можно сделать автоматически, на компьютере.
Гипотеза Берча-Свиннертон-Дайера утверждает, что количество и структура множества рациональных решений эллиптической кривой тесно связаны с поведением L-функции в единице[Если быть точным, то по этой гипотезе ранг группы рациональных решений есть степень первого ненулевого члена разложения L в ряд Тейлора в единице; иными словами, L(z) около единицы похожа на (z-1)r, где r - ранг.]. В частности, количество рациональных точек бесконечно тогда и только тогда, когда L(1)=0.

Благодаря работам отечественного математика Виктора Александровича Колывагина, а также доказательству теоремы Ферма Эндрю Уайлсом это утверждение уже доказано в одну сторону: если L(1) #8800; 0, то количество рациональных точек конечно. Доказательство в другую сторону - предмет долгих и безуспешных поисков. Кроме того, открыт путь для обобщений гипотезы - в частности, к изучению рациональных точек не только кривых, но и поверхностей более высокой размерности (то есть уравнений с бульшим количеством переменных). Например, Леонард Эйлер еще в 1769 году выдвинул гипотезу, что уравнение x4 + y4 + z4 = t4 не имеет ненулевых решений. Эту гипотезу, как и похожую на нее гипотезу Ферма, долгое время не могли доказать, но результат в данном случае оказался иным: в 1988 году обнаружился контрпример (точнее, бесконечно много контрпримеров). Вот минимальный из них (проверить легко - но представьте, как трудно было бы его найти без развитой теории): 2682440 4 + 15365639 4 + 18796760 4 = 20615673 4