3) изотерма адсорбции, которая сопровождается абсорбцией;
4) изотерма адсорбции для случаев, когда адсорбент достаточно хорошо адсорбирует растворитель;
5) изотерма отрицательной адсорбции, когда концентрация молекул растворенного вещества в адсорбционном слое меньше, чем в объеме раствора.
В области средних концентраций адсорбтива адсорбция достаточно хорошо описывается уравнением Фрейндлиха:
где и 1/n - постоянные величины, значения которых находят из экспериментальных данных.
Для описания адсорбции из раствора на твердом теле применимо и уравнение Гиббса:
однако сложность определения s на границе твердое тело-раствор не позволяет непосредственно использовать это уравнение.
2.5.3.
ВЛИЯНИЕ НА МОЛЕКУЛЯРНУЮ АДСОРБЦИЮ ПРИРОДЫ РАСТВОРИТЕЛЯ
Так как молекулы адсорбтива и молекулы растворителя являются конкурентами при адсорбции, очевидно что чем хуже адсорбируется растворитель, тем лучше будет адсорбироваться растворенное вещество. А растворитель адсорбируется тем хуже, чем больше его поверхностное натяжение (). Отсюда вытекают 2 закономерности:
1) адсорбция на твердом адсорбенте идет лучше из водных растворов и хуже из органических растворов;
2) правило Шилова: чем лучше растворитель растворяет вещество, тем хуже вещество адсорбируется из раствора.
2.5.4.
ВЛИЯНИЕ НА МОЛЕКУЛЯРНУЮ АДСОРБЦИЮ ПРИРОДЫ АДСОРБЕНТА
Из свойств адсорбента на адсорбцию влияют его полярность и пористость. Экспериментальные данные позволили сформулировать правило: неполярные твердые тела лучше адсорбируют неполярные адсорбтивы и наоборот.
Влияние пористости зависит от соотношения размеров пор адсорбента и молекул растворенного вещества. Если молекулы растворенного вещества малы и легко проникают в поры твердого тела, то пористость больше и лучше идет адсорбция. Крупные молекулы не могут попасть в узкие поры адсорбента, и адсорбция уменьшается. Это подтверждает правило Дюкло-Траубе - т.е. с ростом длины молекулы адсорбтива выше определенного критического значения адсорбция уменьшается.
2.5.5.
ВЛИЯНИЕ НА МОЛЕКУЛЯРНУЮ АДСОРБЦИЮ ПРИРОДЫ АДСОРБТИВА
Определить влияние природы адсорбтива можно, исходя из правила уравнивания полярностей Ребиндера.
Процесс адсорбции идет в сторону уравнивания полярностей фаз и тем сильнее, чем больше первоначальная разность полярностей.
Полярность фазы можно характеризовать величиной - диэлектрической проницаемостью. Чем больше , тем больше полярность фазы. Исходя из правила Ребиндера, растворенное вещество будет адсорбироваться на твердом теле, если выполняется условие:
тем лучше, чем больше величина ; тем лучше, чем больше
где - диэлектрическая проницаемость растворителя, - диэлектрическая проницаемость растворенного вещества, - диэлектрическая проницаемость твердого вещества.
Из правила уравнивания полярностей Ребиндера можно сделать ряд важных выводов, касающихся адсорбции ПАВ из растворов. Мы знаем, что ПАВ в силу своей дифильности растворяются как в полярных растворителях, так и в неполярных. В зависимости от вида растворителя должен выбираться подходящий адсорбент. Так, для адсорбции ПАВ из водных растворов следует использовать гидрофобные (неполярные) твердые тела, например, уголь. В этом случае выполняется условие: . Адсорбция будет тем большей, чем больше разность . При адсорбции молекулы ПАВ строго ориентированы: углеводородный радикал взаимодействует с поверхностью угля, а полярная часть - с водой. Этим правилом объясняется тот факт, что в водных растворах стирального порошка (ПАВ) гораздо легче и быстрее стираются синтетические ткани, чем хлопчатобумажные или льняные, так как последние являются гораздо более полярными, а значит, и адсорбция стирального порошка на синтетической ткани больше, чем на хлопчатобумажной или льняной.
Для адсорбции ПАВ из неполярных растворителей (бензола, толуола и т.д.) следует использовать гидрофильный адсорбент - силикагель (), глину и т.д. Ориентация молекул ПАВ такова, что неполярный углеводородный радикал направлен в неполярный растворитель, а полярная часть молекулы взаимодействует с полярным адсорбентом. В этом случае выполняется неравенство: