Как NASA показало Америке Луну - страница 18

Шрифт
Интервал

стр.

Сначала вычислим положение Солнца в момент прилунения Аполлона-11. В столбце «Прилунение» таблицы данных по миссиям мы находим, что посадка на Луне произошла через 6,5 дней после новолуния. Умножив 6,5 дней на скорость вращения 13,176 град. в день, получаем 85 град. Вычитаем 85 град. из 180 град. и получаем долготу положения Солнца — 95 град. ВД. Аналогичным образом я вычислил долготу положения Солнца для всех лунных посадок и взлетов, что отражено в таблице угловых расстояний.

Теперь необходимо найти угловое расстояние между точками положения Солнца и посадки на Луне. Оно равно: 95 град. (положение Солнца) — 23 град. (место посадки) = 72 град. Тот же процесс вычислений я использовал и для взлета: 81 град. (положение Солнца) — 23 град. = 58 град.

Ниже приведена таблица угловых расстояний для посадок и взлетов всех экспедиций Аполлонов. Необходимо пояснить, что если обе точки находятся в одной долготе, то значения вычитаются — на рис. 16 слева показана схема посадки Аполлона-11. Если же точки имеют противоположную долготу, то значения складываются — справа на рис. 16 изображена схема взлета Аполлона-12.



Рис. 16. Слева: пункт А Восток — пункт В Восток, справа: пункт А Запад — пункт В Восток




Рис. 17. Слева: прилунение Аполлона-11, справа: сферический треугольник

Соединив эти точки с полюсом (точка С) и с экватором, получаем обычный навигационный треугольник. Две его стороны а и b — это ДОП-ШИР(A) и ДОП-ШИР(B) соответственно, С — угол между двумя сторонами, а третья сторона с — расстояние между двумя точками. Теперь это сферический треугольник. Уравнение для решения сферических треугольников, когда известны две стороны и угол между ними, выглядит следующим образом:

cos с = cos a х cos b + (sin a x sin b x cos C).

Поскольку b всегда равно 90 град., a cos 90 град. = 0, то первую часть уравнения можно опустить. У нас осталось: cos с = sin a х sin b х х cos С. Но поскольку sin 90 град. = 1, можно опустить и sin b. Окончательная формула уравнения выглядит так:

cos с = sin a х cos С.

На рис. 17 справа я использовал схему, более наглядно демонстрирующую сферический треугольник применительно к нашему случаю.

с = acos (sin 89 град. x cos 72 град.).

Значение с получается равным чуть больше 72 град. Угол возвышения Солнца в этот момент равен 90 град. — 72 град. = 18 град. Все остальные вычисления по посадкам и взлетам абсолютно аналогичны. Для момента взлета Аполлона-11 вычисляем:

с = acos (sin 89 град. х cos 58 град.).

Получаем значение чуть больше 58 град. Таким образом, угол возвышения Солнца в этот момент равен 90 град. — 58 град. = 32 град. То же самое проделываем и для остальных миссий.



На последней фотографии, где Олдрин и Армстронг чествуют флаг, тени произведены Солнцем, стоящим на высоте 34,9 град. над горизонтом. Максимальное возвышение Солнца в той экспедиции составляло 32 град., но разница в 2,9 град. явно недостаточна, чтобы делать какие-то выводы. Однако если учесть, что церемония поднятия флага является чуть ли не первым действием после каждой высадки и происходит в течение первых часов, то можно с уверенностью утверждать, что Солнце во время съемки находилось на высоте порядка 22 град. Проведенные вычисления вполне могут разбить утверждения NASA о реальности высадки астронавтов на Луне.

На фотографии с Аполлона-14 ЛЭМ отбрасывает тень. Ее высота на снимке составляет 5,3 мм, длина — не менее 23,1 мм. Тангенс угла мы находим, поделив высоту на длину, он равен 0,23, что соответствует углу 13 град. Однако Солнце к моменту прилета уже находилось на высоте 27 град., а при отлете — на высоте 68 град. Даже если бы астронавты помчались фотографироваться сразу же после посадки, они бы все равно «промахнулись» на 14 град. Дальше эта разница только увеличивалась.

В фотографии сборщика лунных образцов тоже присутствуют расхождения с реальностью. Пит Конрад, который виден в отражении защитного стекла Бина, отбрасывает тень, отчетливо вырисовывающую его пах. Насколько мне удалось измерить, на снимке высота от паха Бина до кончиков его ног составляет 3,6 мм. Длина соответствующей тени практически такая же. Это означает, что Солнце находилось на высоте 45 град. над горизонтом. Однако максимальное возвышение светила в период пребывания там астронавтов составляло лишь 36 град.


стр.

Похожие книги