Один из самых знаменитых результатов Рамануджана связывает не вычислимые по отдельности (даже через числа π и е) слагаемые
удивительной формулой для их суммы:
Вот пример удивительных открытий Рамануджана — его теоремы о делимости чисел разбиений.
Для любого натурального числа n обозначим через р(n) число различных разбиений числа и на натуральные слагаемые. Например, р(3) = = 3, как это показывают три разбиения (других нет):
3 = 3, 3 = 2 + 1, 3 = 1 + 1 +1.
Числа разбиений при n = 1, 2, 3…. образуют последовательность
р(n) = 1, 2,3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176….
которая много изучалась, начиная с Эйлера, связавшего её с теорией степенных рядов и градуированных колец в своём «Введении в анализ».
Рост этой последовательности при больших и описывается асимптотической формулой Харди-Рамануджана-Радемахера
Согласно майору британской артиллерии МакМагону,
р(200) = 3 972 999 029 388.
(Это число можно вычислить по дающему большую точность приближению в правой части формулы.)
В этой формуле всё удивительно: в левой части стоит целое число чисто комбинаторного происхождения, задающее, сколькими способами можно разбить n на слагаемые.
В правой части стоит комбинация квадратного корня и экспоненциальной функции, в которой вдобавок участвуют иррациональные числа: π = 3,14… (задающее отношение длины окружности к её диаметру) и число Непера е = 2,718… (являющееся основой всего математического анализа).
То, что левая часть с большой точностью вычисляется по такой формуле, — совершенно удивительное открытие, где ярко проявляется фундаментальное единство всех частей математической науки: алгебры, геометрии, анализа, комбинаторики, теории вероятностей и техники приближенных вычислений.
Открытия Рамануджана делимости чисел разбиений состоят, например, в следующем:
числа р(5n + 4) [это 5, 30, 135…] делятся на 5.
Математика — экспериментальная наука, и свои открытия Рамануджан сделал, экспериментируя с приведённой выше последовательностью.
Восхищаясь гением Рамануджана, я всё же больше люблю чем-то более близких мне Абеля и Литлвуда. Доказательство Абеля неразрешимости в радикалах алгебраических уравнений степени 5 и выше я в 1963 году перевёл на топологический язык теории римановых поверхностей и групп монодромий накрытий — это доказательство я рассказал тогда московским школьникам, и один из них впоследствии издал это доказательство в виде книжки (В.Б. Алексеев. «Теорема Абеля в задачах и решениях» — М.: Наука, 1976). Поэтому в 2001 году один талантливый польский математик (долго обучавшийся в Москве) опубликовал по-английски своё «новое топологическое доказательство теоремы Абеля» в журнале «Топологические методы в нелинейном анализе».
Отлёты саранчи и отселение оленей
Экологи и этологи давно уже начали исследование того, как решают мальтузианскую проблему животные различных видов. Было обнаружено, что ещё до того, как положение с пищей становится катастрофическим, наблюдается на первый взгляд странное поведение (вроде похода грызунов к морю, где они и утопают), целесообразное не для отдельной особи, но лишь для сохранения вида.
К сожалению, я забыл имена авторов открытий, о которых прочитал в одном из московских научно-популярных журналов (не помню даже, была ли это «Наука и жизнь», «Знание — сила», «Техника — молодежи», «Природа» или «Химия и жизнь»).
Первый случай — отлёт саранчи, порой за тысячи километров. Поразительно здесь то, что улетают не те особи, которые увидели, что их стало слишком много на ближнем поле, а лишь их дети. При этом даже и не обязательно, чтобы их действительно стало много. Можно просто расставить по полю уголковые отражатели, как на аэродроме, отражающие зеркальный образ зрителя, с какой бы стороны он ни подошёл. Тогда саранча примет свои собственные многочисленные отражения за соседних родственников. И в результате следующее поколение — дети — улетят.
Как именно родители передают детям знание о том, что надо улетать, неясно, но во всяком случае не речью и не показом. По-видимому, передача происходит химическим путем. Возможно даже, что достаточно накормить молодёжь особями, видевшими многочисленных «соседей», — тогда молодёжь захочет улететь, соберется в стаю и улетит.