Искусство статистики. Как находить ответы в данных - страница 24

Шрифт
Интервал

стр.

Располагая полными данными, нетрудно получить статистику, описывающую то, что было измерено. Но если мы хотим применять их для более масштабных заключений о происходящем вокруг, качество данных приобретает первостепенное значение. И мы должны быть внимательны к систематическим ошибкам любого рода, которые могут поставить под угрозу надежность этих заключений.

Целые сайты посвящены перечислению возможных ошибок в статистике – от ошибки распределения (ошибка при распределении пациентов по группам) до ошибки добровольного участия (люди, добровольно участвующие в исследованиях, систематически отличаются от людей в генеральной совокупности). Хотя причины возникновения многих из них очевидны, в главе 12 мы узнаем и о более завуалированных причинах появления плохих статистических данных. Но сначала мы должны рассмотреть способы описания нашей конечной цели – целевой совокупности.


Колоколообразная кривая

Подруга в США родила доношенного ребенка весом 2910 граммов. Ей сказали, что это ниже среднего, и она обеспокоена. Действительно ли этот вес недостаточен?

Мы уже обсуждали понятие распределения данных (эмпирическое или выборочное распределение) – закономерность, которой подчинены данные в выборке. Теперь нам нужно рассмотреть концепцию распределения генеральной совокупности, то есть модель во всей интересующей нас группе.

Вернемся к нашей роженице. Будем думать о ее ребенке как о своего рода выборке из одного человека, взятой из генеральной совокупности всех детей, недавно родившихся в США у неиспаноязычных белых женщин (указание расы важно, поскольку вес новорожденных сообщается для различных рас). Распределение генеральной совокупности определяется по весу при рождении для всех таких младенцев; эти данные можно получить из Национальной системы статистического учета естественного движения населения США, в которой зарегистрировано свыше миллиона доношенных детей, родившихся в США в 2013 году у белых неиспаноязычных женщин. Хотя это не все множество рождений, тем не менее выборка настолько велика, что ее можно рассматривать как генеральную совокупность[80]. Новорожденные распределяются по группам в соответствии с их весом при рождении (с шагом 500 граммов); эти данные представлены на рис. 3.2(a).


Рис. 3.2

(a) Распределение веса при рождении для 1 096 277 детей, родившихся в США у белых неиспаноязычных женщин в 2013 году на 39–40 неделе беременности, а также кривая нормального распределения с теми же значениями среднего и среднеквадратичного отклонения (СКО), что и регистрируемый вес детей в этой генеральной совокупности. Ребенок весом 2910 граммов отображен пунктирной линией. (b) Значения среднего ±1, 2, 3 СКО для нормального распределения. (c) Процентили для нормального распределения. (d) Доля новорожденных с низкой массой тела (темно-серая область) и с массой менее 2910 г (серая область)


Вес ребенка вашей подруги (2910 граммов) указан в виде пунктирной линии, положение которой относительно всего распределения можно использовать для оценки того, насколько он «необычен». Важна форма этого распределения. Такие измерения, как вес, доход, рост и другие аналогичные величины, можно, по крайней мере теоретически, производить с любой желаемой точностью. Поэтому для них можно использовать непрерывные распределения, отображаемые не ступенчатыми, а плавными линиями[81]. Классический пример – колоколообразная кривая, или нормальное (гауссовское) распределение, которое впервые было подробно исследовано Карлом Фридрихом Гауссом в 1809 году в контексте анализа ошибок измерений в астрономии и геодезии[82].

Как показывает теория, нормальное распределение случайной величины можно встретить в ситуациях, обусловленных влиянием на нее большого количества мелких факторов, – например, когда на какую-нибудь физическую характеристику нашего тела влияет большое количество генов. Массу тела при рождении (для одной этнической группы и сходного срока беременности) вполне можно считать такой характеристикой, и на рис. 3.2(a) представлена теоретическая кривая нормального распределения с теми же значениями среднего и среднеквадратичного отклонения, что и вся совокупность зарегистрированного веса у детей. Гладкая теоретическая кривая и гистограмма, отображающая реальные данные, удовлетворительно близки


стр.

Похожие книги