.
Многие люди имеют некоторое смутное представление о дедукции благодаря Шерлоку Холмсу, использовавшему ее при поиске преступников[69]. В реальной жизни дедукция – это процесс применения правил логики для перехода от общего к частному. Если согласно законодательству в стране установлено правостороннее движение, то мы можем прийти к дедуктивному заключению, что в любой ситуации лучше ехать по правой стороне. Индукция работает наоборот: на основании частных случаев предпринимаются попытки сделать общие заключения. Например, мы не знаем, принято ли в каком-то сообществе целовать подруг в щеку, и пробуем это выяснить, наблюдая, целуют ли женщины друг друга один, два, три раза или не целуют вовсе. Принципиальное отличие индукции от дедукции состоит в том, что дедукция дает истинные заключения, а индукция – в общем случае нет[70].
На рис. 3.1 индуктивное умозаключение представлено в виде диаграммы, показывающей шаги, связанные с переходом от данных к конечной цели нашего исследования. Как мы увидели, данные, собранные в ходе опроса, рассказывают нам о поведении людей в выборке; эту информацию мы используем для изучения поведения людей, которые могли бы стать участниками опроса, а уже из этого делаем некоторые предварительные выводы о сексуальном поведении в масштабе страны.
Рис. 3.1
Процесс индуктивного умозаключения: каждую стрелку можно истолковать как «говорит нам кое-что о…»[71]
Конечно, было бы идеально, если бы мы могли сразу перейти от просмотра первоначальных данных к общим утверждениям о целевой совокупности. В стандартных курсах статистики предполагается, что наблюдения извлекаются совершенно случайно и непосредственно из интересующей нас совокупности.
Однако в реальной жизни так бывает редко, поэтому нам приходится рассматривать всю процедуру перехода от первичных данных к конечной цели. При этом, как мы увидели на примере с исследованием Natsal, проблемы могут возникать на каждом этапе.
Переход от данных (этап 1) к выборке (этап 2) – это проблемы измерения. Является ли то, что мы фиксируем в своих данных, точным отражением того, что нас интересует? Мы хотим, чтобы наши данные были:
• надежными – в том смысле, что у них низкая изменчивость от случая к случаю и их можно считать воспроизводимыми и точными;
• достоверными – в том смысле, что вы измеряете именно то, что хотите, без какой-либо систематической ошибки.
Например, адекватность в опросе о сексе основывается на том, что люди на один и тот же вопрос каждый раз, когда их об этом спрашивают, отвечают практически одинаково, причем вне зависимости от интервьюера, настроения респондента или его памяти. Это в какой-то степени можно проверять, задавая в начале и в конце специальные вопросы. Качество исследования также требует, чтобы участники описывали свою сексуальную активность честно, а не систематически преувеличивая или преуменьшая свой опыт. Это довольно строгие требования.
Исследование станет недостоверным, если сами вопросы демонстрируют предвзятость в пользу конкретного ответа. Например, в 2017 году авиакомпания Ryanair объявила, что 92 % ее пассажиров довольны предоставляемым сервисом во время перелетов. Но, как оказалось на самом деле, опрос об уровне удовлетворенности предусматривал только ответы отлично, очень хорошо, хорошо, удовлетворительно и окей[72].
Мы уже видели, как форма подачи чисел (в положительном или отрицательном ключе) влияет на восприятие; точно так же формулировка вопроса может влиять на ответ. Например, в ходе опроса, проведенного в Великобритании в 2015 году, людей спрашивали, поддерживают ли они предоставление 16– и 17-летним подросткам права голосовать на референдуме о выходе из Евросоюза. Оказалось, что 52 % выступают за и 41 % – против. Таким образом, большинство людей поддержали это предложение, поскольку оно сформулировано с позиции признания и расширения прав молодежи.
Но когда тем же респондентам задали вопрос (логически идентичный предыдущему), поддерживают ли они уменьшение возрастного ценза для голосования на референдуме с 18 до 16 лет, доля сторонников этой идеи снизилась до 37 %, а против высказались 56 %. Таким образом, когда то же самое предложение было сформулировано в терминах более рискованной либерализации, большинство оказалось против. Мнение изменилось из-за простой переформулировки вопроса