Искусство статистики. Как находить ответы в данных - страница 18

Шрифт
Интервал

стр.

4. Когда это уместно, способ организации позволяет проводить некоторые исследования.


Для реализации четвертого признака можно, например, позволить аудитории взаимодействовать с визуализацией. Хотя это трудно реализовать в книге, следующий пример покажет силу персонализации графического представления информации.

Как менялась популярность моего имени с течением времени?

Некоторые графики настолько сложны, что невооруженным взглядом трудно заметить интересные закономерности. Посмотрите на рис. 2.9, где каждая линия показывает рейтинг популярности имен мальчиков, родившихся в Англии и Уэльсе между 1905 и 2016 годами[61]. Рисунок отображает замечательную социальную историю, хотя сам по себе всего лишь демонстрирует быстро меняющуюся моду на имена, а уплотнение линий в последние годы говорит о расширении и разнообразии списка имен после середины 1990-х.


Рис. 2.9

Скриншот интерактивной диаграммы, предоставленный Национальным статистическим управлением Великобритании, где показаны тенденции изменения популярности имен мальчиков. Мои лишенные воображения родители дали мне в 1953 году самое популярное на то время имя, но с тех пор оно вышло из моды, в отличие от Оливера. Однако в последние годы имя Дэвид снова демонстрирует некоторые признаки повышения востребованности, возможно, благодаря Дэвиду Бекхэму


Только добавив интерактивность, мы можем выделить линии, представляющие для нас интерес. Например, мне интересен тренд для имени Дэвид, которое было особенно популярно в 1920-х и 1930-х годах, возможно, потому, что Дэвидом звали принца Уэльского (будущего короля Эдуарда VIII)[62]. Но затем оно резко утратило популярность – и если в 1953 году я был одним из десятков тысяч Дэвидов, то в 2016-м этим именем назвали всего 1461 ребенка, при этом больше сорока имен оказались гораздо популярнее.


Коммуникация

В этой главе мы старались обобщить и обнародовать данные открытым неманипулятивным способом, чтобы избежать влияния на эмоции и отношение аудитории и не навязывать ей определенную точку зрения. Мы просто хотим рассказать все как есть или по крайней мере как должно быть. Хотя мы не вправе претендовать на то, что излагаем абсолютную истину, мы пытались быть максимально правдивыми.

Конечно, о такой научной объективности проще говорить, чем реализовывать на практике. Когда в 1834 году Чарльз Бэббидж, Томас Мальтус и другие ученые создали Лондонское статистическое общество (впоследствии Королевское статистическое общество), они помпезно заявили, что «статистическое общество будет считать первым важнейшим правилом своей деятельности тщательное исключение всех частных мнений из своих протоколов и публикаций и основываться исключительно на фактах, причем – насколько это вообще возможно – на тех, которые могут быть записаны в численном виде и зафиксированы в таблицах»[63]. Увы, на это ограничение никто не обращал внимания с самого начала: авторы работ стали вставлять свои мнения о данных относительно преступлений, здоровья и экономики и советовать, что с этим делать. Возможно, лучшее, что мы можем сейчас, – признать это искушение и всячески стараться держать свое мнение при себе.

Первое правило коммуникации – закрыть рот и слушать, чтобы лучше познакомиться с аудиторией, будь то политики, профессионалы или широкие массы. Мы должны понимать их неизбежные ограничения и любые возможные недоразумения и бороться с искушением казаться слишком умными или чрезмерно вдаваться в детали.

Второе правило коммуникации – знать, чего вы хотите добиться. Будем надеяться, что цель – способствовать открытым обсуждениям и принятию взвешенных решений. Однако, похоже, нелишне повторить еще раз, что цифры не говорят сами за себя: контекст, язык и графический вид способствуют коммуникации. Нужно признать, что мы рассказываем историю, а люди неизбежно станут сравнивать и выносить суждения, даже если мы всего лишь хотели информировать, а не убеждать. Все, что мы можем, – это постараться предотвратить неуместные инстинктивные реакции с помощью предупреждений или системы представления данных.


стр.

Похожие книги