Искатели необычайных автографов - страница 149
— По известной формуле, — сейчас же соображает Асмодей. — Квадрат расстояния между двумя точками равен сумме квадратов разностей координат этих точек, иначе говоря
d>2= (X>1 — Х>2)>2 + (У>1 — У>2)>2.
— Очень хорошо. Подставим в эту формулу координаты соответствующих вершин треугольника. Тогда:
Ну, а теперь построим на сторонах нашего треугольника новые треугольники, на сей раз равносторонние. Намечаю их пунктиром. Буквами n, m и р обозначим точки пересечения медиан в каждом из них. Это и будут их центры тяжести. Точки эти, как известно, находятся на расстоянии двух третей медианы, считая от вершины. В первом равностороннем треугольнике это Am = От. Во втором — An = Вn. В третьем — Вр = Ор. Но так как в равностороннем треугольнике медианы являются в то же время и высотами, а высота в этом случае равна половине стороны, умноженной на
то
Иначе:
(Ат)>2 = (mO)>2 = (AO)>2/3 = 41/3, (An)>2 = (Вn)>2 = AB>2/3 = 50/3;
(Вр)>2 = (Ор)>2 = OB>2/3 = 27.
Мате на мгновение отрывается от чертежа и, убедившись, что Фило еще жив, продолжает:
— Далее обозначим искомые координаты центров тяжести равносторонних треугольников. Точки m: х>1, у>1; точки n: x>2, у>2; точки р: х>3, у>3. Займемся сперва одним треугольником и по известной уже нам формуле о квадрате расстояния между двумя точками вычислим, что
(Am)>2 = (Оm)>2 = (x>1 — 4)>2 + (y>1 — 5)>2 = x>1>2 + y>1>2 = 41/3.
Решая систему двух уравнений:
(x>1 — 4)>2 + (y>1 — 5)>2 = x>1>2 + y>1>2 и x>1>2 + y>1>2 = 41/3, найдем, что
— А как это у вас получилось? — неожиданно для себя самого интересуется Фило.
— По-моему, это понятно всякому школьнику, — сердито отвечает Мате.
— Допустим. А как же быть с двумя знаками перед вторыми слагаемыми? Какой из них выбрать?
— Ну, а это уж где как. Обратите внимание на то, что первые слагаемые (2 и 2,5) — это координаты середины стороны ОА. В самом деле:
(O + 4)/2 = 2 и (O + 5)/2 = 2,5
А точка т лежит слева от этой середины, но выше ее. Следовательно, в первом равенстве (x>1) надо сохранить знак минус, а во втором (у>1) — знак плюс. Поэтому окончательно:
Точно таким же образом найдем координаты точек n и р:
Остается вычислить расстояния между т и п, п и р, р и т. Обозначим их буквой dс соответствующими индексами: тп, пр и рт. Тогда:
Если теперь вычислить
окажется, что все три результата одинаковы:
Ну, а раз равны квадраты расстояний, то равны и сами расстояния. Стало быть, соединив точки m, n и р, мы получим равносторонний треугольник.
— Квод демонстрандум эрат! Что и требовалось доказать, — торжественно заключает Асмодей.
— Не забудьте рассмотреть еще два частных случая первоначального треугольника, — суетливо напоминает Мате. — Когда сумма двух сторон равна третьей и когда одна из сторон равна нулю. — Он протягивает Фило и Асмодею заранее заготовленные чертежики. — Как видите, моя теорема справедлива также и для них.
— Благодарю вас, мсье! Поверьте, мне было чрезвычайно интересно! Поздравляю с удачей! — рассыпается бес, но вдруг совершенно неожиданно зевает и страшно смущается. — Пардон, мсье! Не подумайте, что это от вашей теоремы. Всему виной чай. Он всегда действует на меня, как снотворное. С вашего разрешения я вздремну немножко…
Он взлетает на верхнюю полку и скрывается в книге Лесажа, с силой захлопнув за собой картонную обложку. В ту же минуту оттуда начинает исходить легкое блаженное похрапывание: «Хрр-фью… хрр-фью…»
Филоматики растроганно переглядываются.
— Перерыв?
— Перерыв!
ВЕЧЕР ЧАЙНОГО ДНЯ
— Открываем наше вечернее заседание, — объявляет Фило, когда все они снова сидят за столом и Асмодей кулачком протирает заспанные глаза. — Что у нас на повестке… пардон, на чашке дня?
Бес молча указывает на рисунок, где три блистательных кавалера и одна изысканная дама играют в карты.
— Эпизод под названием «В великосветском салоне», — определяет Фило.
Все еще позевывая, Асмодей заглавие одобряет, считает, однако, необходимым добавить, что к этому эпизоду примыкает еще один: «Встреча на улице Сен-Мишель», связанный с ним общей темой «Теория вероятностей». Кроме того, прежде чем перейти к обсуждению, не мешает установить дату…