Интерстеллар: наука за кадром - страница 22

Шрифт
Интервал

стр.

Поразительная вещь, которой не найти аналогов в повседневной жизни. Представьте, что, зная мой вес и скорость ходьбы, вы могли бы узнать обо мне все: цвет глаз, длину носа, коэффициент интеллекта…

Джон Уилер (мой наставник, придумавший название «черная дыра») изрек по этому поводу фразу: «У черных дыр нет волос», — то есть нет каких-либо дополнительных, независимых свойств, помимо массы и скорости вращения. По-хорошему ему стоило сказать: «У черной дыры лишь два волоса, по которым можно узнать о ней все», но это звучит не столь хлестко, как его фраза, быстро ставшая крылатой[33].

Как показано в фильме, знающий теорию относительности физик способен вывести из свойств планеты Миллер массу и скорость вращения Гаргантюа и, следовательно, узнать о ней все остальное. Разберемся, как это работает[34]

Масса Гаргантюа

Планета Миллер (о которой я подробно расскажу в главе 17) находится настолько близко к Гаргантюа, насколько это возможно без того, чтобы планете угрожала гибель. Мы знаем об этом, поскольку экипаж, находясь там, тратит очень много «земного времени» — такое возможно лишь в предельной близости к Гаргантюа.

На столь малом расстоянии приливная гравитация черной дыры (см. главу 4) особенно сильна. Она растягивает планету Миллер в направлениях к Гаргантюа и от нее и сжимает «по бокам» (рис. 6.1). Сила этих растяжений и сжатий обратно пропорциональна квадрату массы Гаргантюа. Почему это так? Чем больше масса Гаргантюа, тем больше ее окружность, а значит, тем меньше разница между гравитационными силами, действующими на разные части планеты, то есть тем слабее приливные силы см. ньютоновскую интерпретацию приливных сил, рис. 4.8). Исходя из этого можно сделать вывод, что масса Гаргантюа превышает солнечную не менее чем в 100 миллионов раз. Будь Гаргантюа не такой массивной, планету Миллер разорвало бы на части!

>Рис. 6.1. Приливная гравитация Гаргантюа растягивает и сжимает планету Миллер

Во всех дальнейших рассуждениях я буду считать, что масса Гаргантюа равна массе 100 миллионов Солнц[35]. Например, объясняя в главе 17, как приливные силы Гаргантюа могут вызвать на планете Миллер гигантские волны, которые обрушиваются на «Рейнджер», я исхожу из этого значения.

Длина окружности горизонта событий черной дыры пропорциональна ее массе. Для Гаргантюа, масса которой составляет 100 миллионов Солнц, окружность горизонта приблизительно совпадает по размерам с орбитой движения Земли вокруг Солнца — около миллиарда километров. Неслабо!

Посовещавшись со мной, команда по созданию визуальных эффектов Пола Франклина использовала именно это значение.

Физики принимают радиус черной дыры равным длине ее окружности, деленной на 2π (около 6,28). Из-за чудовищных искривлений пространства внутри черной дыры это значение не соответствует ее истинному радиусу, оно не равно расстоянию от горизонта до центра дыры, если измерять его в нашей Вселенной. Зато оно равно радиусу (половине диаметра) горизонта событий, если измерять его из балка (см. рис. 6.3). Понимаемый так радиус Гаргантюа составляет примерно 150 миллионов километров; столько же, сколько радиус орбиты Земли вокруг Солнца. 

Вращение Гаргантюа

Когда Кристофер Нолан сказал мне, какое замедление времени на планете Миллер ему нужно — один час там на семь земных лет, — я был ошарашен. Я полагал это невозможным, о чем и сказал Крису. «Это не обсуждается», — отрезал он. Что ж, не в первый и не в последний раз я отправился в раздумьях домой, сделал кое-какие расчеты и… нашел выход.

Я обнаружил, что если планета Миллер будет настолько близко к Гаргантюа, насколько это возможно без риска упасть в черную дыру[36], и если скорость вращения Гаргантюа будет достаточно высокой, замедление «один час за семь лет» возможно. Но Гаргантюа должна вращаться чертовски быстро.

Для скорости вращения черных дыр есть предел. Если он будет превышен, горизонт событий исчезнет, оставив на виду у всей Вселенной обнаженную сингулярность. А это, по всей видимости, противоречит законам физики (см. главу 26).

Выяснилось, что для замедления, которое нужно Крису, Гаргантюа должна вращаться со скоростью, близкой к предельной, меньше ее примерно на одну стотриллионную долю


стр.

Похожие книги