Эйнштейновский закон искривления времени
Эйнштейн бился над загадками гравитации с 1907 года. Наконец в 1912 году его посетило гениальное озарение. Он понял, что массивные тела вроде Земли или черных дыр могут искривлять время и это искривление является причиной гравитации. Он выразил эту идею в виде «эйнштейновского закона искривления времени» (как я его называю) — точной математической формулы[19], суть которой можно описать фразой: Все стремится существовать там, где оно медленнее всего стареет, и гравитационное притяжение направлено именно туда.
Чем больше замедление времени, тем сильнее гравитационное притяжение. На Земле замедление времени составляет лишь несколько микросекунд в день, поэтому силы гравитации здесь умеренные. На поверхности нейтронной звезды, где замедление времени составляет несколько часов в день, гравитация сильна чрезвычайно. А у поверхности черной дыры, где время почти не движется, гравитация настолько огромна, что даже свет не может ее преодолеть.
>Рис. 4.1. Определение замедления времени на Земле с помощью атомных часов (из книги Клиффорда Уилла «Был ли прав Эйнштейн? Проверка общей теории относительности» [Will 1993])
Замедление времени вблизи черной дыры играет в «Интерстеллар» важную роль. Купер переживает, что больше не увидит свою дочь Мёрф, поскольку, находясь вблизи Гаргантюа, он стареет лишь на несколько часов, тогда как для Мёрф на Земле проходят годы.
В течение примерно полувека после того, как Эйнштейн вывел свою теорию, человеческие технологии оставались слишком примитивными, чтобы ее проверить. Первое достоверное подтверждение появилось в 1959 году, когда Боб Паунд и Глен Ребка воспользовались новым методом под названием «эффект Мёссбауэра»[20] для сравнения скорости течения времени в подвале 22-метровой башни Гарвардского университета со скоростью его течения на вершине этой же башни. Эксперимент был отменно точным: достаточно точным, чтобы определить разницу с погрешностью до 0,0000000000016 секунды (1,6 триллионной доли секунды) в день. Примечательно, что полученная разница превысила предел точности в 130 раз, в полном соответствии с теорией относительности: время в подвале текло на 210 триллионных долей секунды в день медленнее, чем наверху башни.
Точность проверки повысилась в 1976 году, когда Роберт Вессот из Гарварда с помощью ракеты NASA поднял атомные часы на 10 000 километров и посредством радиосигналов сравнил их ход с часами, которые остались на Земле (рис. 4.1). Вессот обнаружил, что время на Земле течет примерно на 30 микросекунд (0,00003 секунды) в день медленнее, чем на высоте 10000 километров, и этот результат удовлетворял эйнштейновскому закону искривления времени в пределах точности эксперимента. Эта точность (погрешность эксперимента Вессота) равнялась 0,00007 от 30 микросекунд в день.
Система глобального позиционирования (GPS), благодаря которой наши смартфоны могут определять свое положение с точностью до 10 метров, работает благодаря радиосигналам от 27 спутников, вращающихся вокруг Земли на высоте 20000 километров (рис. 4.2).