В этой главе
• Приводится краткий обзор 10 алгоритмов, которые не рассматривались в книге. Вы узнаете, для чего нужны эти алгоритмы.
• Я порекомендую книги, которые стоит читать дальше в зависимости от того, какие темы представляют интерес для вас.
Вернемся к примеру с бинарным поиском. Когда пользователь вводит свое имя на сайте Facebook, сайт должен проверить содержимое большого массива, чтобы узнать, существует ли пользователь с таким именем. Мы выяснили, что для нахождения значения в массиве быстрее всего воспользоваться бинарным поиском. Однако здесь возникает проблема: каждый раз, когда на сайте регистрируется новый пользователь, придется заново сортировать массив, потому что бинарный поиск работает только с отсортированными массивами. Насколько удобнее было бы вставить пользователя в правильную ячейку массива, чтобы потом его не пришлось сортировать заново! Именно эта идея заложена в основу структуры данных бинарного дерева поиска.
Бинарное дерево поиска выглядит так:
Для каждого узла все узлы левого поддерева содержат меньшие значения, а все узлы правого поддерева — большие значения.
Предположим, вы ищете узел Maggie. Поиск начинается с корневого узла.
Строка Maggie идет после David, поэтому идем направо.
Строка Maggie предшествует Manning, поэтому идем налево.
Мы нашли узел Maggie! В целом процедура поиска напоминает бинарный поиск. Поиск элемента в бинарном дереве поиска в среднем выполняется за время O(log n), а в худшем случае — за время O(n). Поиск в отсортированном массиве выполняется за время O(log n) в худшем случае — казалось бы, отсортированный массив эффективнее. Однако бинарное дерево поиска в среднем работает намного быстрее при удалении и вставке элементов.
У бинарных деревьев поиска есть и свои недостатки: во-первых, они не поддерживают произвольный доступ. Вы не сможете потребовать: «Выдайте мне i-й элемент этого дерева». Кроме того, в таблице приведено