620 километров дорогостоящего кабеля навеки ушли в океанскую пучину. Не оставалось ничего другого, как отложить попытку новой прокладки до следующего года: кабеля, оставшегося в тенксах обоих кораблей, было недостаточно, чтобы начать всё сначала.
Однако Филд и его коллеги, хотя и испытали разочарование, не пали духом. Они успешно проложили много миль кабеля, причём треть его на глубине около 4 километров, и поддерживали телеграфную связь с землёй до тех пор, пока не произошёл обрыв. На практике было доказано, что в осуществляемом ими мероприятии нет ничего невозможного. Проделанная работа вселяла надежду на успех.
Корабли возвратились в Англию, где на верфи в Плимутском порту выгрузили оставшиеся 3500 километров кабеля. "Ниагара" и "Агамемнон" вернулись к своим прежним занятиям, для которых они теперь меньше всего подходили.
Инженеры внимательно изучили причины ошибок, допущенных при первой попытке проложить кабель. Снова началась подготовка с тем, чтобы предотвратить их повторение. Вытравливающий механизм, явившийся основной причиной неудачи, полностью переконструировали. Был использован новый вид тормоза, который автоматически ослабевал, если появлялось слишком большое натяжение кабеля.
Неутомимый Филд вернулся в Америку, чтобы собрать нужные средства. Но страну охватила депрессия, лишившая его состояния. Неудача первой экспедиции подорвала веру в проект, и теперь трудно было получить поддержку и в Америке, и в Англии. Тем не менее, необходимая сумма была всё-таки собрана и новые 1300 километров кабеля заказаны.
В то время как шли приготовления к новой экспедиции, профессор Томсон тоже не бездействовал. Занимаясь своей обычной работой в университете, он одновременно продолжал изучать проблему телеграфной связи через Атлантику. Опытным путём он определил, что эффективность прохождения сигнала по кабелю значительно возрастёт, если к его приёмному концу подключить достаточно чувствительный детектор.
Когда к одному концу кабеля прикладывается электрический импульс (допустим, "точка" или "тире"), он появляется на другом конце не в виде мгновенного повышения напряжения. Первая реакция приёмного устройства на этот импульс - плавноподнимающаяся волна электричества; требуется некоторое время, чтобы она достигла своей максимальной величины. Если с помощью чувствительного прибора уловить самое начало этой волны, то ждать, когда кривая достигнет наивысшей точки, не нужно: сигнал будет приниматься немедленно и сразу же можно будет послать следующий. Так можно избежать искажения сигналов на приёмном конце линии, посылаемых обычным нажатием на ключ Морзе.
Проведем такую аналогию. Вода, находящаяся за дамбой, образует вертикальную стену, которую можно сравнить с первоначальным моментом импульса, посылаемого по кабелю при нажатии на ключ. Момент посылки импульса соответствует моменту внезапного разрушения дамбы: уровень воды тотчас же начинает спадать. В точке, находящейся на значительном расстоянии от дамбы, первым указанием на то, что вода хлынула за её пределы, явится почти незаметная волна; потребуется определённое время для того, чтобы она достигла своей максимальной величины. Но как только вы увидите эту первую едва заметную волну, вы тотчас поймёте, что произошло.
Следовательно, задача, которую ставил перед собой Томсон, состояла в создании чрезвычайно чувствительного детектора, который был бы способен уловить первоначальный момент появления импульса. Но Уайтхауз, обладая исключительной способностью делать не то, что нужно, занял противоположную позицию. Он продолжал настаивать на усилении импульса на передающем конце кабеля с тем, чтобы даже нечувствительные приборы, такие, как его собственный патентованный самописец, могли читать посылаемые сигналы. Последствия занятой им позиции мы увидим позже.Решение проблемы приёма сигналов было найдено, как ни странно, благодаря моноклю Томсона. Непроизвольно вращая в руке монокль, Томсон заметил, что световые блики, отражённые от стёкол, быстро бегают по комнате. Это навело его на мысль о создании зеркального, впоследствии широко известного, гальванометра.