Моя бабушка и Галилео Галилей
Физика по своей сути экспериментальная наука, и измерения и их погрешности лежат в основе каждого исследования и открытия. Даже величайшие теоретические прорывы в физике обычно имеют форму прогнозов относительно величин, которые поддаются измерению. Возьмем, например, второй закон Ньютона F = ma (сила равна массе, умноженной на ускорение), пожалуй, самое важное уравнение в физике; или, скажем, знаменитое Эйнштейновское E = mc² (энергия равна массе, умноженной на квадрат скорости света), самое известное уравнение в физике. А как еще физикам выражать взаимосвязи, если не через математические уравнения с участием разных измеримых величин, таких как плотность, вес, длина, заряд, гравитационное притяжение, температура или скорость?
Я признаю, что в данном случае могу быть несколько предвзятым, ведь мои исследования при написании докторской диссертации в основном сводились к различного типа высокоточным измерениям частиц ядерного распада, а мой вклад в развитие рентгеновской астрономии базировался на измерениях жесткого рентгеновского излучения из источников, расположенных в десятках тысяч световых лет от Земли. Однако я со всей ответственностью утверждаю: физика без измерений попросту бессмысленна. И что не менее важно, любые значимые измерения без учета их погрешности бессмысленны тоже.
Должен сказать, что мы постоянно живем с некоторой оглядкой на погрешность в разумных пределах. Когда банк сообщает вам, сколько денег на вашем счету, вы ожидаете погрешности не больше полкопейки. Приобретая одежду онлайн, покупатель рассчитывает, что ее размер будет отличаться от нужного весьма незначительно. Если пара штанов 34-го размера окажется меньше или больше всего на 3 процента, их размер в области талии изменится более чем на два сантиметра; в результате вы получите либо штаны 35-го размера, висящие у вас на бедрах, либо 33-го, что заставит вас недоумевать, как это вы умудрились так быстро и основательно поправиться.
Не менее важно, чтобы измерения выражались в правильных единицах. Возьмем, к примеру, неудачную одиннадцатилетнюю миссию НАСА Mars Climate Orbiter по исследованию марсианского климата, которая обошлась в 125 миллионов долларов и закончилась катастрофой из-за банальной путаницы в единицах измерений. Одна команда инженеров использовала метрические единицы, а другая английские, в итоге в сентябре 1999 года космический аппарат вместо того, чтобы выйти на стабильную орбиту, вошел в атмосферу Марса.
Мое безоговорочное признание решающей роли измерений в физике послужило одной из причин скептического отношения к теориям, которые нельзя проверить с помощью измерений. Возьмем теорию струн или ее, так сказать, усовершенствованную версию, теорию суперструн, то есть последнюю на сегодняшний день попытку теоретиков предложить «теорию всего». Физикам-теоретикам – а теорию струн выдвинули поистине блестящие ученые – еще предстоит разработать хотя бы один эксперимент, один прогноз, позволяющий проверить любое из положений теории струн. Увы, по крайней мере на текущий момент ничто в данной теории не может быть подтверждено либо опровергнуто экспериментально. Это означает, что пока что она не имеет предсказательной силы, в связи с чем некоторые физики, в том числе Шелдон Глэшоу из Гарварда, сомневаются, стоит ли вообще считать ее физической теорией.