По воспоминаниям В. Г. Короленко, профессор Макаров, прекрасный лектор, к доске подходил лишь в редких случаях. Обычно он, как и Монж, довольствовался движением рук в пространстве. Большим и указательным пальцами левой руки он как бы крепко держал «математическую точку», а правой проводил от нее в воздухе линии, проецируя их на воображаемые плоскости.
Крупнейшим ученым-графиком был Валериан Иванович Курдюмов. Прекрасный инженер и педагог, он издал четырнадцать капитальных трудов, в которых глубоко раскрыл не только теоретические основы, но и очень важные практические приложения начертательной геометрии. Ему принадлежат замечательные слова: «Если чертеж является языком техники, то начертательная геометрия служит грамматикой этого всемирного языка, так как она учит нас правильно читать чужие и излагать на нем наши собственные мысли, пользуясь в качестве слов одними линиями и точками, как элементами всякого изображения».
Знаменитый русский геометр-кристаллограф Евграф Степанович Федоров — автор ряда трудов по проективной геометрии, открыл новые пути для развития начертательной геометрии, как теории изображений, включив в круг рассматриваемых ею вопросов системы четырех, пяти и более измерений, что нашло применение в физической химии, кристаллографии и многих других науках.
Впечатляющим примером исключительно плодотворного сочетания научно-исследовательской и практической инженерной деятельности является творчество известного русского и советского ученого, выпускника, созданного Бетанкуром института, профессора Николая Алексеевича Рынина.
Человек разносторонних интересов, Рынин был одним из теоретиков и пропагандистов воздушных и межпланетных сообщений. Он читал курс воздухоплавания в своем институте, летал на самолетах и воздушных шарах, установил всероссийский рекорд высоты полета на аэростате, создал энциклопедию «Межпланетные сообщения» в девяти книгах.
Выдающиеся способности исследователя ярко раскрылись в ряде работ Николая Алексеевича по методам изображений.
«Начертательная геометрия, — писал он, — является звеном, соединяющим математические науки с техническими. Возникшие за последние годы новые технические науки — аэросъемка, киноперспектива, стереофотография и т. п, — выводят целый ряд новых предложений на основе графического решения поставленных задач».
По учебнику Рынина изучал начертательную геометрию и автор этих строк, как и другие курсанты Высшего военно-морского инженерного училища, любовно называвшие «брошюркой Рынина» этот капитальный труд. И надо сказать, автор этого учебника подает предмет так, что им невозможно не увлечься.
Перу Николая Алексеевича принадлежит и «Сборник задач по начертательной геометрии» (сотни и сотни задач из разных областей приложения этой науки!), и «Материалы по истории начертательной геометрии», где уделено достойное внимание Гаспару Монжу, его предшественникам и последователям, впервые показано развитие созданной Монжем науки в нашей стране.
Много есть формулировок понятия «наука», разные ее стороны и свойства они отражают. Но, пожалуй, самая красивая из ее черт точно подмечена М. Горьким. Он назвал науку областью наибольшего бескорыстия.
Этим свойством науки и объясняется та потребность общения, которую мы видим в ученых с давних времен, их неизменное стремление поделиться с коллегами всем, что удалось найти, разработать, доказать… Этим, конечно же, объясняется быстрый прогресс наук в условиях общения ученых разных стран и, в частности, тот плодотворный научный обмен в математике и механике между учеными Франции и нашей страны, начиная со времен Монжа, Лагранжа и Лапласа, чьи идеи успешно разрабатывали и развивали представители русской школы математиков и механиков. Они показали себя достойными принять эстафету от великих французских предшественников.
И первым среди замечательных продолжателей их дела надо назвать имя академика Пафнутия Львовича Чебышева, основателя Петербургской школы математиков, снискавшей всемирную известность. Его вклад в теорию чисел (тема докторской диссертации) и в теорию вероятностей очень велик. «В значительной мере благодаря трудам школы Чебышева, — пишет Д. Я. Стройк, — теория вероятностей, развиваясь в связи с запросами естествознания и прикладных наук, могла достичь положения ведущей математической дисциплины