Итак, если принять прямоугольное (ортогональное) проецирование, то проекцией точки, резюмирует Монж, надо называть основание перпендикуляра, опущенного из точки на плоскость. И если мы имеем в пространстве две заданные плоскости и на каждой из них нам даны проекции точки, положение которой надо зафиксировать, то тем самым точка будет вполне определена!
Эти две плоскости проекций могут, вообще говоря, составлять любой угол. Но если он будет тупым, то перпендикуляры к ним встретятся под очень острым углом, что внесет большую неточность. Поэтому, сделал вывод Монж, две плоскости следует выбирать перпендикулярными между собой. А чтобы можно было изображать обе проекции на одном листе и выполнять на нем все построения, надо развернуть вертикальную плоскость вокруг линии ее пересечения с горизонтальной так, чтобы обе они совместились.
Так сформировался метод ортогонального проецирования, или метод Монжа, принятый впоследствии во всех странах мира.
Предшественники Монжа знали обе проекции, попеременно пользовались ими… Именно попеременно — то одной, то другой. Этим и ограничили они возможности чертежа. Надо было объединить обе проекции в единый взаимосвязанный комплекс (эпюр, как стали называть такой чертеж после Монжа) подобно тому, как выражения, содержащие «икс», и выражения, содержащие «игрек», объединены в уравнении линии в аналитической геометрии. Вот чего недоставало геометрии синтетической!
Не стоять на одной ноге и не переминаться с ноги на ногу, а прочно опереться на обе одновременно — вот что надо было сделать, чтобы поднять груз, казавшийся до Монжа непосильным. Прочно опираясь на две взаимосвязанные проекции, геометр начал укладывать камень за камнем в стены нового здания. Он работал с упоением. Чем выше росли стены и чем выше поднимался вместе со стенами их строитель, тем более широкий горизонт открывался перед ним…
Оказывается, на комплексном чертеже можно делать все: построить точку, линию, геометрическую фигуру заданных размеров, даже несколько фигур, заставить их пересекаться, можно их вращать, находить точки и линии пересечения, определять натуральную величину углов и отрезков. Две проекции вполне определяют любой объект и позволяют, не пользуясь образцами и моделями, спроектировать новое сооружение, избежав тех «великолепных нелепостей», когда балка не дотягивается до стены, а лестница повисает в воздухе.
Несколько лет назад Гаспар уже испытывал такое чувство. Но тогда фантазия влекла его неизвестно куда. Он строил воздушные замки, ничего не зная о трудностях и тонкостях дела, неизбежных даже при постройке курятника. На этот раз он вооружен плодотворной и проверенной идеей, вооружен научным знанием. И его столь же пылкая, как и в юности, фантазия ведет вперед, сверяясь по надежному компасу. И строит он не воздушные замки, а науку.
Компас — инструмент малый, но если бы его не было, Америка не была бы открыта, говаривал академик А. Н. Крылов, который очень высоко ценил и постоянно пропагандировал среди морских инженеров творческий стиль великого французского геометра, теснейшую связь в его работах науки с практикой, с потребностями промышленного развития страны.
Внутренний компас Монжа всегда направлял его на те именно теоретические вопросы, прямого и точного ответа на которые настоятельно требовала практика эпохи промышленной революции. Начертательная геометрия Монжа была той теорией» без которой практика уже начинала задыхаться.
«…Надо расширить, — писал позднее Монж, — знание многих явлений природы, необходимое для прогресса промышленности…» Почему мы прибегаем к более позднему высказыванию ученого, а не к его словам мезьерского периода, станет ясно позднее. А сейчас покажем цели начертательной геометрии, как их понимал Монж.
«Эта наука имеет две главные цели.
Первая — точное представление на чертеже, имеющем только два измерения, объектов трехмерных, которые могут быть точно заданы.
С этой точки зрения — это язык, необходимый инженеру, создающему какой-либо проект, а также всем тем, кто должен руководить его осуществлением, и, наконец, мастерам, которые должны сами изготовлять различные части.