Физик читает Кэрролла - страница 2

Шрифт
Интервал

стр.

Убедительным примером "коварства" (и нетривиальности физического мышления) Кэрролла может служить знаменитая задача "Обезьяна и груз", придуманная Кэрроллом в конце 1893 г.: "_Через блок, прикрепленный к потолку, переброшен канат. На одном конце каната висит обезьяна, к другому прикреплен груз, вес которого в точности равен весу обезьяны. Предположим, что обезьяна начала взбираться вверх по канату. Что произойдет при этом с грузом_?"

Как и многие другие творения Кэрролла, его "обезьянья" задача породила многочисленные дискуссии и споры. Ей посвящена обширная литература. Потешаясь над своими учеными коллегами - профессорами физики Клифтоном и Прайсом, профессором химии Верной Харкортом и лектором колледжа Христовой церкви Оксфордского университета Сэмпсоном, Кэрролл сделал в своем дневнике следующую запись: "_21 декабря, четверг (1893 г.). Получил ответ профессора Клифтона к задаче "Обезьяна и груз". Весьма любопытно, сколь различных мнений придерживаются хорошие математики. Прайс утверждает, что груз будет подниматься с возрастающей скоростью, Клифтон (и Харкорт) считают, что груз будет подниматься с такой же скоростью, как обезьяна, а Сэмпсон полагает, что груз будет опускаться_". Нашлись и такие, кто считал, что груз останется на месте.

Споры по поводу того, какое решение "обезьяньей" задачи Кэрролла следует считать _единственно правильным_, время от времени возникают и поныне. (В действительности условия задачи _недоопределены_ и ответ зависит от дополнительных предположений, вводимых при решении задачи.) Задача "Обезьяна и груз" вошла в число 400 лучших задач, отобранных авторитетным жюри и составивших содержание специального выпуска журнала "The American Mathematical Monthly" {The Otto Dunkel Memorial Problem Book, ed. by H. Evans and E. P. Stark. - "The American Mathematical Monthly", 64.7 (Part II), 1957. Русский перевод см. в кн.: Избранные задачи. М., "Мир", 1977 (задача Э 8).}. Такой успех редко выпадает на долю автора физической задачи, тем более автора не профессионала, а любителя. Не один преподаватель физики мог бы присоединиться mutatis mutandis к словам В. Сибрука, написанным по поводу обратной ситуации - успеху выдающегося американского физика Роберта Вуда, выступившего в качестве любителя на литературном поприще: "Будь я проклят, если я стану сочувствовать автору-любителю, стихи которого выдержали девятнадцать изданий, а псевдонаучные сенсации были опубликованы в крупнейших журналах Америки" {Вильям Сибрук. Роберт Вуд. М., Физматгиз, 1960, с. 176.}.

Столь же отчетливо звучит "физическая тема" и в задаче о двух ведерках из "Истории с узелками" (Узелок IX). Суть ее сводится к следующему. Маленькое ведерко плавает в другом ведерке чуть больших размеров. Воды в большем ведерке - едва на донышке.

Ведерко плавает, подчиняясь, конечно, закону Архимеда, который в старых учебниках сформулирован так: "Тело, погруженное в жидкость, теряет в своем весе столько, сколько весит вытесненная им жидкость". Но откуда взять столько жидкости, если она едва покрывала дно большего ведерка?

И все же сколь ни интересны физические задачи Кэрролла, его произведения обладают неотразимой привлекательностью в глазах физической аудитории прежде всего потому, что "сумасшедшая" логика Кэрролла близка и созвучна логике современной физической теории, долженствующей сочетать в себе "_безумные_" идеи (по Бору) и _математическое изящество_ (по Дираку).

Желая лишить изучающего логику ориентиров, подсказываемых здравым смыслом, Кэрролл придумал логические задачи {"Символическая логика". - В кн. Льюис Кэрролл. История с узелками.}, в которых посылки находились в вопиющем противоречии с повседневным опытом. Но правила вывода, подобно улыбке Чеширского Кота, оставались и после того, как угасала надежда на помощь здравого смысла. Именно эти правила и позволяли найти решение задачи. Физику не приходится измышлять логические задачи с "безумными" посылками: их ставит перед ним сама природа.

В бесплотной игре внешне свободно трансформируемых слов (_имен_), составляющей по мнению некоторых филологов и философов {См., например: Elisabeth Sewell. The Field of Nonsense. L., 1952.} существо кэрролловского нонсенса, физик явственно ощущает отражение сложных отношений между реальными объектами - носителями имен (_денотатами_). Nonsense Кэрролла физик воспринимает не как отсутствие всякого смысла ("senselessness"), а как разрыв с обычным приземленным "здравым смыслом" ("common sense"), лишающим полета фантазию художника и ученого. Отказываясь от логики здравого смысла, Кэрролл приносит ее в жертву логике несравненно более глубокой, во многом напоминающей диалектическую логику современного научного исследования, подчас столь причудливую, что она кажется непостижимой, противоречивой и способной повергнуть в отчаяние не только человека, далекого от науки, но и самого исследователя.


стр.

Похожие книги