Действие радиации легко расчитать. Известно,что максимальное изменение объема стали при нейтронном облучении составляет 0,3% . Например,если подвергнуть облучению только средний участок стальной детали длиной 1000мм и высотой 50мм ,то устраняется прогиб в 2,5мм.
Не металические и композиционные материалы при облучении изменяют свой объем еще сильней.Например,пластмассы - до 24% .
С помощью радиации мы не просто выпрямляем деталь, а перераспределяем внутренние напряжения до нового равновесного состояния массой внедрившихся частиц. Поэтому изделие самопроизвольно уже не разогнется. Этот способ защищен авторским свидетельством . 395147 (см.18.5.1)
2.4. С п л а в ы с п а м я т ь ю .
Некоторые сплавы металлов: титан-никель,золото-кадмий, медь-алюминий обладают "эффектом памяти". Если из такого сплава изготовить деталь,а затем ее деформировать,то после нагрева до определенной температуры деталь востанавливает в точности свою первоначальную форму. Из всех известных сейчас науке сплавов "с памятью" наиболее уникальны по спектру свойств сплавы из титана и никеля: сплавы ТН (за рубежом они известны под названием нитинол). Сплавы ТН развивают большие усилия при восстановлении своей формы.
Этим воспользовались в Институте металлургии им. А.А.Бойкова. После того, как нитинолу дадут "запомнить" слежную форму, изделие вновь превращается в плоский лист. На его поверхность наносят обычными приемами - с помощью проката, напыления, сварки взрывом или как-либо иначе слой любого другого металла или сплава.
Такой металлический слоеный пирог после нагревания вновь превращается в деталь сложной конфигурации. Таким способом можно, в принципе создавать многослойные изделия любой формы, которые обычными приемами сделать никак нельзя. ТН сплавы легко обрабатываются, из них изготавливают всевозможные изделия: листки, прутки, поковки. Кроме того, эти сплавы сравнительно экономичны, коррозионностойки, хорошо гасят вибрации. Из нитинола американцы сделали антенны для спутников. В момент запуска антенна свернута, занимает очень мало места. В космосе же нагретая солнечными лучами, она принимает сложнейшие формы, приданные ей еще на Земле.
При соединении полых деталей с каркасом заклепки из сплава ТН существенно упростят дело. Вставили заклепку "с памятью", нагрели ее, она "вспомнила", что уже была некогда расплющена, и приняла свою первоначальную форму. Сплавы "с памятью" открывают новые возможности в деле непосредственного преобразования тепловой энергии в механическую. Нагретую ТН-проволочку свернули в спираль. Охладили, подвесили гирькупружинка растянулась. Если теперь через проволочку пропустить электрический ток, пружинка нагреется и восстановит свою форму - гирька поползет вверх, выключаем ток - гирька вновь спускается и т.д. По сути дела - это искуственный мускул. На этом принципе можно делать двигатели нового типа, использующие даровую энергию Солнца.
Перспективы для сплавов "с памятью" самые заманчивые: тут и тепловая автоматика, быстродействующие датчики, термоупругие элементы, реле, приборы контроля, тепловые домкраты, напряженный железобетон и многое другое.
Л И Т Е Р А Т У Р А
- - - - - - - - -
К 2.1.1. М.И.Каганов, В.Д.Нацик, Электроны тормозят дислока
цию "Природа", 1976, н'5, стр.23-24: н'6, стр.131-139.
К 2.1.2. В.И.Спицын, О.А.Троицкий, Электропластическая дефор
мация металлов, "Природа", 1977.
К 2.1.3. Ю.Осипьян, И.Савченко, "Письма в ЖЭТФ, вып.7, н'4.
К 2.1.4. С.И.Ратнер, Ю.С.Данилов, Изменение пределов пропор
циональности и текущести при повторном нагружении,
"Заводская лаборатория", 1950, н'4.
Ф.Ходж Теория идеально пластических тел, М.. "ИЛ", 1956
К 2.4. И.И.Карнилов и др., Никелид титана и другие сплавы с
эффектом "памяти", "Наука", 1977.
3.1. Тепловое расширение вещества.
Все вещества (газы, жидкости, твердые тела) имеют атомно-молекулярную структуру. Атом, равно как и молекулы, во всем диапозоне температур находятся в непрерывном хаотическом движении, причем, чем выше температура обьема вещества, тем выше скорость перемещения отдельных атомов и молекул внутри этого обьема (в газах и жидкостях) или их колебания - в кристаллических решетках твердых тел. Поэтому с ростом температуры увеличивается среднее расстояние между атомами и молекулами, в результате чего газы, жидкости и твердые тела расширяются - при условии, что внешнее давление остается постоянным. Коэффиценты расширения различных газов близки между собой (около 0,0037 град в степени "-1"; для жидкостей они могут различаться на порядок (ртуть - 0,00018 град в степени "-1", глицерин - 0,0005 град в степени "-1", ацетон - 0,0014 град в степени "-1", эфир - 0,007 град в степени "-1"). Величина теплового расширения твердых тел определяется их строением. Структуры с плотной упаковкой (алмаз, платина, отдельные металлические сплавы) мало чувствительны к температуре, рыхлая, неплотная упаковка вещества способствует сильному расширению твердых тел (аллюминий, полиэтилен).