Финансы - страница 80

Шрифт
Интервал

стр.

 4.5. Множественные денежные потоки

 4.6. Аннуитеты

4.7. Пожизненная рента

 4.8. Амортизация кредитов

4.9, Валютные курсы и стоимость денег во времени

 4.10. Инфляция и анализ на основе дисконтирования денежных потоков

4.11. Налоги и инвестиционные решения


Как мы узнали из первой главы, при принятии финансовых решений необходимо учитывать разнесенные во времени расходы и доходы. Людям, принимающим финансовые решения в фирмах и домохозяйствах, нужно думать о том, оправдано ли сегодняшнее вложение денег ожидаемыми выгодами в будущем. Для этого необходимо верное понимание концепции стоимости денег во времени (time value of money, TVM) и метода дисконтирования денежных потоков, или метода ДДП (discounted cash flow, DCF), которые представлены в этой главе.

Концепцию стоимости денег во времени (TVM) можно объяснить следующим образом: деньги (доллар, марка или иена) сегодня стоят больше, чем такая же сумма, которую вы ожидаете получить в будущем. Существует, как минимум, три причины, по которым это утверждение правдиво. Первой причиной является то, что эти деньги вы можете инвестировать, получить проценты, и денег у вас в конце концов станет больше. Вторая причина заключается в следующем — покупательная способность денег со временем может упасть из-за инфляции. Третья — в получении денег в будущем нельзя быть до конца уверенным.

В этой главе мы расскажем о том, каким образом учитывать первый фактор: процент. Об инфляции и неопределенности мы расскажем в следующих главах.

4.1. СЛОЖНЫЕ ПРОЦЕНТЫ

Мы начинаем изучение стоимости денег во времени и анализа дисконтированных денежных потоков с понятия сложных процентов. С помощью вычисления сложных процентов совершается процесс перехода от приведенной, или, как еще говорят, текущей стоимости (present value) денег, (PV) к будущей стоимости (future value) (FV). Будущая стоимость — это сумма, которой будут равняться инвестированные деньги к определенной дате с учетом начисления сложных процентов. Например, предположим, что вы положили 1000 долл. (PV) на банковский счет из расчета процентной ставки в 10% годовых. Сумма, которую вы получите через пять лет при условии, что не возьмете ни цента до истечения этого срока, называется будущей стоимостью 1000 долл. из расчета ставки процента 10% годовых и срока инвестирования пять лет.

Давайте определим наши термины более точно:

PV — приведенная стоимость, или начальная сумма на вашем счете. В данном примере 1000 долл.

i – процентная ставка, которая обычно выражается в процентах в год. Здесь 10% (или 0,10 в десятичном представлении).

п — количество лет, на протяжении которых будут начисляться проценты.

FV— будущая стоимость через п лет.

Теперь рассчитаем будущую стоимость в этом примере поэтапно. Во-первых, сколько денег у вас будет по окончании первого года? У вас будет 1000 долл., с которых начиналась данная финансовая операция, плюс проценты в размере 100 долл. (10% от 1000 долл. или 0,1х1000 долл.). Будущая стоимость ваших денег, таким образом, будет равняться 1100 долл.:


FV = 1000 долл. х 1,10 = 1100 долл.


Если вы оставите 1100 долл. еще на один год, то сколько денег вы получите по окончании второго года? На протяжении второго года вы заработаете 10% от 1100 долл. Таким образом сумма начисленных процентов будет равна 0,10 х 1100 долл., или 110 долл. Значит, к концу второго года вы будете счастливым обладателем 1210 долл.

Для того чтобы получить ясное представление о природе сложных процентов, мы можем разбить будущую стоимость (1210 долл.) на три составляющие. Первая часть— это исходные 1000 долл. Следующим компонентом будут проценты, начисленные на эту сумму, — 100 долл. за первый год и еще 100 долл. за второй год. Проценты, начисленные на основную сумму вклада, называются простыми процентами (simple interest) (200 долл. в нашем примере). И наконец, есть еще проценты в размере 10 долл., полученные во второй год, которые были начислены на 100 долл., полученных в виде процентов за первый год. Проценты, начисленные на уже выплаченные проценты, называются сложными процентами (compound interest). Общая сумма процентных начислений (210 долл.) состоит из простых процентов (200 долл.) и сложных процентов (10 долл.).


стр.

Похожие книги