ОТВЕТ. По истечении двух лет до окончания срока погашения останется 18 лет и цена облигации будет равна:
n
i
PV
FV
PMT
Результат
18
6
7
1000
0
PV= 350,34 долл.
Таким образом, величина пропорционального изменения цены облигации точно соответствует ее доходности (6% в год):
Пропорциональное изменение цены = (350,34 долл. – 330,51 долл.) / 330,51 долл. = 6%
Контрольный вопрос 8.6.Предположим, что вы купили бескупонную облигацию с доходностью 6%, сроком погашения 30 лет и номиналом 1000 долл. На следующий день рыночные процентные ставки поднялись до 7%, что привело к повышению доходности вашей облигации до 7%. Какова будет величина пропорционального изменения цены облигации?
ОТВЕТ. Исходная цена бескупонной облигации со сроком погашения 30 лет равна:
n
i
PV
FV
PMT
Результат
30
6%
?
1000
0
PV =174,11 долл.
На следующий день ее цена будет равна:
n
i
PV
FV
PMT
Результат
30
7%
?
1000
0
PV= 131,37 долл.
Величина пропорционального снижение цены составит 24,55%.
Вопросы и задания
Оценка облигаций с равномерной структурой платежей
Шаблон8.1-8.3
1. Предположим, вам необходимо определить цену 7%-ной купонной о6-лигации Казначейства США со сроком погашения 10 лет с ежегодной выплатой процентов.
а. Вы узнали, что доходность при погашении составляет 8%. Какова будет цена облигации?
Ь. Какова будет цена облигации, если купонные платежи осуществляются раза в полгода, а доходность при погашении составляет 8%?
с. Теперь вы узнали, что доходность при погашении составляет 7% в год. Какая будет цена облигации? Можете ли вы предположить результат, не выполняя специальных расчетов? Что будет, если купонный доход будет выплачиваться раз в полугодие?
2. Предположим, шесть месяцев назад кривая доходности по ценным бумагам Казначейства США зафиксировалась на уровне 4% в год (с годовым начисление процентов) и вы купили облигацию Казначейства США со сроком погашения 30 лет. Сегодня кривая доходности вышла на уровень 5% в год. Какую доходность вы получили бы по своей первоначальной инвестиции:
а. если купили бы 4%-ную купонную облигацию?
Ь. если купили бы бескупонную облигацию?
с. насколько изменятся ваши ответы, если выплата по купонным платежам осуществляется раз в полгода?
Оценка облигаций с неравномерной структурой платежей
3. Предположим, вы изучаете следующие цены на безрисковые бескупонные облигации:
Срок погашения
Цена за 1 долл. номинала
Доходность при погашении
1 год
2 года
0,97
0,90
3,093
а. Какой должна быть цена на купонную облигацию с 6%-ной купонной доходностью и сроком обращения два года, если купонные платежи осуществляются один раз в год начиная со следующего года?
Ь. Впишите в таблицу отсутствующее значение.
с. Какой будет доходность при погашении по двухгодичной купонной облигации, рассматриваемой в пункте а)?
d. Почему ваши ответы для пунктов Ь) и с) отличаются друг от друга?
Отделение купонов
14. Предположим, вы искусственно хотите создать бескупонную облигацию со сроком погашения через два года. В вашем распоряжении имеется следующая информация: одногодичные бескупонные облигации продаются из расчета 0,93 долл. за один доллар от номинальной цены, а двухгодичные 7% купонные облигации (с ежегодной выплатой процентов) продаются по цене 985,30 долл. (номинал = 1000 долл.).
а. Какие два денежных поступления ожидаются по двухгодичной облигации?
Ь. Допустим, вы можете купить двухгодичную купонную облигацию и раздельно продать два денежных потока по этой облигации.
i. Сколько вы получите от продажи первого купонного платежа (отделенного купона)?
п. Какую сумму необходимо получить от продажи двухгодичной облигации Казначейства США с отделенными купонами для того, чтобы выйти на точку безубыточности своих инвестиций?
Закон единой цены и оценка облигаций
5. Предположим, что все облигации, указанные в следующей таблице, сопоставимы по всем ценовым параметрам, за исключением ожидаемых доходов. Используйте табличные данные и закон единой цены для расчета отсутствующих табличных значений. Купонные платежи осуществляются ежегодно.
Купонная доходность
Срок погашения
Цена
Доходность при погашении
6%
2 года
5,5%
0
2 года
7%
2 года
0
1 год