Естествознание. Базовый уровень. 11 класс - страница 17

Шрифт
Интервал

стр.

Тем не менее в первой половине XX в. встал вопрос о необходимости введения количественной характеристики для передаваемых и принимаемых сообщений. Эта количественная характеристика вскоре получила название информация. Официально создателем теории информации считается американский инженер и математик Клод Шеннон (1916–2001), опубликовавший свою работу в этой области в 1948 г., хотя ещё в начале XX в.  у него были предшественники (рис. 19). Работая в компании «Белл», Шеннон занимался процессами передачи сообщений, а во время Второй мировой войны много времени уделял процедуре шифрования (рис. 20). Перед исследователями, занимавшимися проблемами связи, стоял вопрос, как передать полезное сообщение с максимальной точностью и минимальными затратами. Для этого требовалось знать, сколько информации попало к потребителю и сколько её потерялось в процессе передачи. Поэтому количество информации необходимо было измерить.

Как можно измерить информацию? Прежде всего, надо уяснить, что информация – это не характеристика сообщения, а характеристика отношения между сообщением и его потребителем. Одно и то же сообщение может содержать огромную информацию для одного потребителя и нулевую – для другого, например для человека, незнакомого с языком, на котором передано это сообщение.

Логично предположить, что количество содержащейся в сообщении информации зависит от того, насколько это сообщение было неожиданным. Ведь если мы заранее знали всё, о чём нам сообщили, то никакой информации нам это сообщение не дало. Но как измерить степень неожиданности строгой количественной мерой? Допустим, получив сообщение, мы не узнали ничего нового. Это означает, что результат был известен нам и до сообщения и мы могли предугадать его с вероятностью, равной единице. Значит, единичной вероятности соответствует нулевая информация. Но если мы не были уверены в правильном ответе на интересующий нас вопрос, мы вместе с точным ответом получаем и какую-то информацию. Определить её количество можно, если представить себе, что такое самый простой вопрос. Очевидно, это такой вопрос, на который можно ответить либо «да», либо «нет».


Рис. 2 0. Лаборатория «Белл» в Мюррей Хилл (Нью-Джерси, США), работая в которой в 1948 г. Клод Шеннон опубликовал статью «A Mathematical Theory of Communication», одну из основополагающих работ по теории информации.


Если мы не имеем заранее никаких предположений, то, независимо от того, каким будет ответ, мы получаем одно и то же количество информации. Это количество представляет собой единицу информации и называется бит.

В том случае, когда ответ нельзя получить сразу, требуется задавать дополнительные вопросы. Самой эффективной для спрашивающего будет такая стратегия, когда он задаёт вопросы с возможными ответами «да» или «нет», причём вероятности получить тот или иной ответ кажутся ему одинаковыми. На этом строится широко известная игра в угадывание известного человека или кого-нибудь из присутствующих. Угадывающий мысленно разбивает ответы на две, как ему кажется, равновероятные части и задаёт вопрос, ответ на который может быть положительным или отрицательным. Каждый раз он получает информацию, равную одному биту. Количество полученной при угадывании информации равно числу вопросов, которые пришлось задать игроку. Искусство угадывания зависит от того, каким образом должен быть поставлен вопрос. Приведём один из возможных примеров такой игры. Допустим, требуется угадать Исаака Ньютона. Можно представить, что игра проходит следующим образом.

1. «Это государственный деятель?» – «Нет!» – 2. «Занимался искусством?» – «Нет!» – 3. «Занимался наукой?» – «Да!» – 4. «Биологией?» – «Нет!» – 5. «Физикой?» – «Да!» (Теперь можно угадывать либо по времени, в котором жил этот учёный, либо по его национальности. Первый вариант представляется более простым, так как большинство известных нам учёных жили либо в XIX, либо в XX в. Поэтому можно поставить следующие вопросы.) – 6. «Живёт в наше время?» – «Нет!» – 7. «Жил в прошлом веке?» – «Нет!» (Значит, он жил либо в XIX в., либо раньше.) –


стр.

Похожие книги