Экспонента - страница 9

Шрифт
Интервал

стр.

Мой клон, кубовидный уродец, был оснащен новейшим процессором Intel 80486. Он мог обрабатывать одиннадцать миллионов команд в секунду, что было в четыре-пять раз больше, чем у моего предыдущего компьютера. Кнопка на корпусе с надписью Turbo могла заставить процессор работать процентов на двадцать быстрее. Однако, как в автомобиле, водитель которого слишком часто давит на педаль газа, дополнительная скорость часто приводила к катастрофам.

Этот компьютер поставлялся с четырьмя мегабайтами памяти (или ОЗУ), то есть в четыре тысячи раз больше, чем у ZX81. Графика была потрясающей, хотя и не самой передовой. Я мог выводить на экран 32 768 оттенков цветов, пользуясь не самым современным графическим адаптером, который я подключил к машине. Эта палитра впечатляла, но была не совсем реалистичной: например, плохо отображались оттенки синего цвета. Если бы мой бюджет был на 50 фунтов стерлингов (около 85 долларов в то время) больше, я мог бы купить видеокарту с шестнадцатью миллионами оттенков цветов — так много, что человеческий глаз вряд ли различает некоторые из них.

Десятилетний путь от ZX81 до моего клона PC отражал период экспоненциальных технологических изменений. Процессор клона PC был в тысячи раз мощнее, чем у ZX81, а сам компьютер 1991 года — в миллионы раз эффективнее своего собрата из 1981 года. Эта трансформация стала результатом быстрого прогресса в развивающейся вычислительной индустрии, что выразилось в удвоении скорости компьютеров примерно каждые два года.

Чтобы понять эту трансформацию, необходимо изучить принцип работы компьютеров. В XIX веке английский математик и философ Джордж Буль попытался представить логику с помощью операций, включающих два состояния — ложь и истину. В принципе любую систему с двумя состояниями можно изобразить с помощью чего угодно. Например, вы можете механически представить ее двумя положениями рычага: вверх или вниз. Вы можете теоретически представить ее в виде конфеток M&M’s двух цветов — синих и красных (это, безусловно, вкусно, но непрактично). В итоге ученые решили, что лучше всего эту систему изображать цифрами 0 и 1 (такой двоичный разряд еще называют битом).

На заре вычислительной техники пользоваться Булевой логикой было сложно и громоздко. Именно поэтому компьютеру — а попросту любому устройству, которое могло выполнять операции, используя эту логику, — требовались десятки неуклюжих механических составляющих. Но в 1938 году произошел настоящий переворот: Клод Шеннон, тогда аспирант Массачусетского технологического института, понял, что можно построить электронные схемы с применением Булевой логики, а именно представить включенное состояние как 1, а выключенное — как 0. Это было революционное открытие, давшее толчок созданию компьютеров с использованием электронных компонентов. Первый программируемый электронный цифровой компьютер известен тем, что во время Второй мировой войны им пользовались шифровальщики, в том числе Алан Тьюринг[16].

Через два года после окончания войны ученые из Bell Labs разработали транзистор — полупроводниковое устройство, способное управлять электрическим током. Транзисторы могли выполнять функцию переключателей, и их можно было использовать для создания логических вентилей — элементов, способных выполнять элементарные логические вычисления. Если собрать несколько таких логических вентилей вместе, можно было получить работающее вычислительное устройство.

Звучит очень «технически», но смысл простой: новые транзисторы были меньше и надежнее, чем электронные лампы, которые использовались в первых компонентах электронных схем, и они проложили путь к созданию более сложных компьютеров. Созданный в декабре 1947 года первый транзистор был громоздким, собранным из множества деталей, в том числе скрепки для бумаг. Но он работал! С годами транзисторы превратились из такой импровизации в сложные стандартные устройства.

С конца 1940-х годов целью стало уменьшение размеров транзисторов. В 1960 году Роберт Нойс из компании Fairchild Semiconductor разработал первую в мире интегральную схему, которая объединила несколько транзисторов в одном устройстве. Эти транзисторы были крошечными, и по отдельности их невозможно было обработать ни вручную, ни машиной. Их изготавливали с помощью сложного процесса, немного схожего с химической фотографией, — фотолитографии. Специалисты направляли ультрафиолетовый свет через пленку с шаблоном — изображением схемы (похоже на детский трафарет). Схема отпечатывалась на кремниевой пластине; процесс можно было повторять на одной и той же пластине несколько раз, пока определенное количество транзисторов не накладывалось друг на друга. Каждая пластина могла содержать несколько идентичных копий схем, уложенных в сеть. Отрежьте одну копию — и получите кремниевый «чип».


стр.

Похожие книги