Движение. Теплота - страница 13

Шрифт
Интервал

стр.

Какая же ошибка будет сделана, если считать солнечного наблюдателя инерциальным?

Для сравнения достоинств земного и солнечного наблюдателей подсчитаем, на какой угол повернется солнечная система отсчета за одну секунду. Если полный оборот совершается за 180·10>6 лет (6·10>15 с), то за одну секунду солнечная система отсчета повернется на 6·10>−14 градуса или на угол в 10>−15 радиана. Можно сказать, что солнечный наблюдатель в 100 миллиардов раз «лучше» земного.

Желая еще больше приблизиться к инерциальной системе, астрономы берут за основу систему отсчета, связанную с несколькими галактиками. Такая система отсчета – наиболее инерциальная из всех возможных. Лучшую систему найти уже невозможно.

Астрономы могут быть названы звездными наблюдателями в двух смыслах: они наблюдают звезды и описывают движения небесных светил с точки зрения звезд.

Ускорение

Для того чтобы охарактеризовать непостоянство скорости, физика пользуется понятием ускорения.

Ускорением называют изменение скорости за единицу времени. Вместо того чтобы говорить: «скорость тела изменилась на величину a за 1 секунду», мы говорим короче: «ускорение тела равно a».

Если мы обозначим через v>1 скорость прямолинейного движения в первый момент времени, а через v>2 скорость в последующий, то правило расчета ускорения a выразится формулой



где t – время, в течение которого нарастала скорость.

Скорость измеряется в см/с (или м/с и т.д.), время – в секундах. Значит, ускорение измеряется в см/с за секунду. Число сантиметров в секунду делится на секунды. Таким образом, единица ускорения будет см/с>2 (или м/с>2 и т.д.).

Разумеется, ускорение может меняться во время движения. Однако мы не будем этим непринципиальным обстоятельством усложнять изложение. Будем молчаливо предполагать, что во время движения скорость набирается равномерно. Такое движение называется равномерно-ускоренным.

Что такое ускорение криволинейного движения?

Скорость есть вектор, изменение (разность) скоростей есть вектор, значит, и ускорение – тоже вектор. Для того чтобы найти вектор ускорения, надо разделить векторную разность скоростей на время. А как строить вектор изменения скорости, мы уже говорили.

Шоссе делает поворот. Отметим два близких положения автомашины и скорости ее представим векторами (рис. 14). Вычитая векторы, мы получим величину, вовсе не равную нулю; деля ее на промежуток времени, найдем величину ускорения. Ускорение имело место и тогда, когда величина скорости при повороте не менялась. Криволинейное движение всегда ускоренное. Неускоренное только равномерное прямолинейное движение.



Говоря о скорости движения тела, мы все время оговаривали точку зрения на движение. Скорость тела относительна. С точки зрения одной инерциальной системы она может быть большой, с точки зрения другой инерциальной системы – малой. Не нужно ли делать такие же оговорки, когда мы говорим об ускорении? Конечно, нет. Ускорение в противоположность скорости абсолютно. С точки зрения всех мыслимых инерциальных систем ускорение будет одним и тем же. Действительно, ведь ускорение зависит от разности скоростей тела в первый и второй момент времени, а эта разность, как мы уже знаем, будет одинаковой со всех точек зрения, т.е. является абсолютной.

Ускорение и сила

Если на тело силы не действуют, то оно может двигаться только без ускорения. Напротив, действие на тело силы приводит к ускорению, и при этом ускорение тела будет тем большим, чем больше сила. Чем скорее мы хотим привести в движение тележку с грузом, тем больше придется напрягать свои мускулы. Как правило, на движущееся тело действуют две силы: ускоряющая – сила тяги, и тормозящая – сила трения или сопротивления воздуха.

Разность этих двух сил, так называемая результирующая сила, может быть направлена вдоль или против движения. В первом случае тело убыстряет движение, во втором – замедляет. Если эти две противоположно действующие силы равны одна другой (уравновешиваются), то тело движется равномерно, так, как если бы на него вообще не действовали силы.

Как же связаны сила и создаваемое ею ускорение? Ответ оказывается очень простым. Ускорение пропорционально силе:


стр.

Похожие книги