Когда явление радиоактивности — естественного превращения атомов элементов — было изучено с достаточной полнотой, возник вопрос: если возможно самопроизвольное превращение элементов друг в друга, то почему бы не попытаться искусственным путем вызвать этот интересный процесс?
Ответ не заставил себя ждать. Темпы развития науки в XX столетии были уже не те, что в прошлые века. Всего через двадцать с небольшим лет после открытия радиоактивности произошли события, которые вызвали на страницах научных журналов ставшее старомодным и покрывшееся уже пылью времени слово «алхимия».
Впрочем, трудно усмотреть что-либо алхимическое в приборе, который был сконструирован в 1919 году знаменитым английским физиком Резерфордом. В этом приборе с помощью увеличительной трубы наблюдали радиоактивные свойства немногих известных к тому времени радиоактивных элементов. Радиоактивное излучение обнаруживалось по возникновению вспышек на экране из сернистого цинка. Дело в том, что при соударении частицы, вылетающей из ядра радиоактивного элемента, с кристаллами сернистого цинка наблюдается небольшая вспышка, которую можно заметить в увеличительное стекло. Радиоактивные препараты помещались на штативе, в самом центре прибора.
Итак, все весьма просто, и ничего достойного удивления нет. Не было причин для удивления и тогда, когда Резерфорд обнаружил, что вспышки на экране прекращаются, если между радиоактивным элементом и экраном поставить тонкую металлическую или слюдяную пластинку. Ясно, что радиоактивные лучи не могут проникнуть через преграду.
Трудно сказать, что побудило Резерфорда в одном из опытов заполнить камеру водородом. И вот тут-то стали наблюдаться совершенно удивительные вещи. Несмотря на то что между источником радиоактивного излучения и экраном стояла металлическая преграда, вспышки на экране появлялись точно так же, как будто бы перегородки не было. Впрочем, вспышки прекращались тотчас же, как только выпускали водород.
Объяснение этому явлению было найдено не сразу. Как это часто бывает, вначале в голову приходили самые невероятные идеи, и, как водится, разгадка была удивительно проста и вместе с тем многозначительна.
Естественные радиоактивные элементы (в данном случае это был полоний) испускают так называемые альфа-лучи: ядра атомов гелия. Гелий имеет атомный вес 4, следовательно, его атомы вчетверо тяжелее атомов водорода, атомный вес которого равен 1. Альфа-частицы, сталкиваясь с ядрами атомов водорода — протонами, — передают им свою энергию. А так как масса протонов мала в сравнении с массой альфа-частиц, то они приобретают большую скорость, которая позволяет им проходить через преграду.
Вот почему водород делает металлическую пластинку как бы проницаемой для излучения. Просто? Очень просто! Однако самое интересное было впереди.
Когда камеру заполнили другим газом — азотом, то вспышки на экране стали появляться точно так же, как если бы в приборе был водород. Это было уже совсем непонятно. Ведь ядра атомов азота много тяжелее, чем альфа-частицы (в 3,5 раза), и если перегородка непроницаема для гелия, то тем более она должна задерживать азот.
Но почему же все-таки появляются вспышки на экране? Как проходят радиоактивные частицы через экран, который может пропускать в лучшем случае только ядра водорода? Может быть, к азоту случайно примешан водород? В камеру был впущен азот, тщательно очищенный от каких-либо посторонних примесей и, особенно, от водорода. Однако вспышки на экране появлялись с прежней регулярностью.
Оставалось предположить только одно: очевидно, водород каким-либо образом образуется в камере из азота под действием радиоактивного излучения. Поначалу эта мысль показалась дикой. Но последовали опыты, убедительно доказывающие, что предположение было совершенно правильным. Да, действительно, из азота в камере образовывался водород!
Так была реализована первая ядерная реакция, увидев которую добропорядочный химик середины прошлого столетия долго и недоуменно пожимал бы плечами и так бы ушел, ничего не поняв. Вот она, эта реакция: