В заключение можно сказать, что в системе NTSC каждому нелинейному искажению соответствует искажение цветового тона (фазы) или насыщенности (амплитуды) или же оба вида искажений. Опыт показал, что в системе NTSC отклонение фазы порядка ±5° уже заметно для глаза.
в) Магнитная запись
При воспроизведении записанной на магнитной ленте телевизионной программы относительная точность воспроизведения фазы φ, считываемой видеомагнитофоном поднесущей, равна относительной точности выдерживания скорости воспроизведения V:
Δφ/φ = ΔV/V,
где Δφ и ΔV обозначают изменения фазы и скорости. Если осуществлять синхронизацию видеомагнитофона в конце каждой строки, допуская, что отклонение скорости остается постоянным, то фаза поднесущей в конце каждой строки (точно перед установкой синхронизации) будет иметь следующее отклонение:
Δφ = φ>макс∙ΔV/V
где φ>макс= 227,5∙360°= 163 800°.
При нормальном относительном уходе скорости ΔV/V =0,3 % Δφ = 491°24′, т. е. за время прохождения одной строки график цветности совершил вращение на целый круг и еще третью часть (!), и, следовательно, цветовой тон непрерывно искажается в направлении слева направо.
Студийные видеомагнитофоны обычно имеют по четыре вращающиеся головки, каждая из которых записывает или воспроизводит два десятка строк.
Само собой разумеется, что сложные передаточные функции этих четырех головок, т. е. их фазовые и амплитудные характеристики, не могут быть идентичными. Следовательно, коммутация сигнала с одной головки на другую вызывает резкое изменение фазы и амплитуды и кварц приемника из-за перегрузки не сможет их скомпенсировать. Поэтому на цветном изображении зритель заметит появление горизонтальных полос различных цветовых тонов и насыщенности.
Третье явление возникает при воспроизведении записанного на магнитной ленте телевизионного сигнала системы NTSC. Известно, что видеомагнитофоны работают с частотной модуляцией и что запись производится с низкой несущей. Синусоидальному сигналу в области видеочастот (например, поднесущей) в ЧМ-спектре соответствует не одна боковая как при амплитудной модуляции, а несколько боковых составляющих полос. Первая нижняя полоса попадает в спектр модулирующего сигнала, а вторая должна находиться в области отрицательных частот; следовательно, она «отражается» и интерферирует с первой и видеонесущей. Интерференция создает неприятные для глаз муаровые полосы, заметность которых возрастает в кубе от амплитуды поднесущей.
Эти недостатки, о которых нельзя было подозревать, ибо видеомагнитофоны появились через несколько лет после утверждения системы NTSC в качестве американского стандарта, побудили американских инженеров разработать высокочастотный стандарт записи и дополнительную аппаратуру, как, например, «Колортек», которую из-за ее сложности мы здесь рассматривать не будем. Только такой усложненный видеомагнитофон позволяет производить запись цветного телевизионного изображения по системе NTSC с высоким качеством.
г) Влияние полосы пропускания. Квадратурные искажения
Принцип передачи в системе NTSC основан на модулировании несущей сигналами цветности со сдвигом фаз на 90°. Поэтому проникновение модуляции I на ось Q и, наоборот, равно нулю, и взаимные помехи этих двух информации не возникают.
На деле неполадки в передаче, как, например, срез полосы пропускания, могут нарушить эту квадратуру (сдвиг фаз на 90°). В самом деле, амплитудную модуляцию можно изобразить на диаграмме Френеля комбинацией двух симметричных равных, но вращающихся в противоположных направлениях векторов. Эти два вектора изображают боковые линии модуляции, которая, разумеется, предполагается синусоидальной. Если частоту несущей обозначить F, а модулирующую частоту f, то эти боковые полосы будут соответственно F + f и F — f. Само собой разумеется, что случайный срез полосы пропускания в большей или меньшей мере ослабит верхнюю полосу; в этих условиях боковые полосы будут уже не равными, а векторы, изображающие I и Q, больше не будут перпендикулярными. Проекции I на Q и Q на I перестанут быть равными нулю и между этими двумя информациями о цвете возникнут взаимные помехи.