R = 1; G = 1; B = 1
Величины R, G и В в этом случае не могут быть больше 1.
Рис. 20. График цветности, на котором показаны точки, обозначающие места основных и дополнительных к ним цветов.
Примечание. Почему отдали предпочтение (R — Y) и (В — Y) и не воспользовались (G — Y)? Потому что это последнее выражение содержит меньше информации о цветности, чем два первых. Это следует из равенства (4).
Можно также отметить, что
R — Y = -0,59G + 0,70R — 0,11B;
B — Y = -0,59G — 0,30R + 0,89B.
тогда как
G — Y = -0,41G — 0,30R — 0,11B
Рассматривая приведенные равенства, констатируем, что по абсолютной величине коэффициенты всех трех составляющих в двух первых выражениях больше, чем в последнем, что свидетельствует об их более богатом содержании информации о цветности.
Теорема I.Координаты цветности двух дополнительных цветов равны по своей абсолютной величине, но имеют разные знаки; точки, символизирующие на цветовом графике два дополнительных цвета, располагаются симметрична по отношению к началу координат.
Возьмем два цвета, характеризуемые составляющими
R>1G>1B>1и R>2G>2B>2.
Если эти цвета аддитивно дополнительные, то сумма их координат равна координатам белого цвета; тогда
R>1 + R>2 = 1 (5)
G>1 + G>2 = 1 (6)
B>1 + B>2 =1 (7)
и
Y>1 + Y>2 =1 (8)
Вычитание уравнения (8) из уравнения (5) дает результат:
(R>1 — Y>1) + (R>2 — Y>2) = 0
или
R>1 — Y>1 = — (R>2 — Y>2). (9)
Вычитание уравнения (8) из уравнения (7) дает результат:
(B>1 — Y>1) + (B>2 — Y>2) = 0
или
B>1 — Y>1 = — (B>2 — Y>2). (10)
Равенства (9) и (10) определяют координаты двух точек, расположенных симметрично по отношению к началу координат точке О. Как видно из графика (рис. 21), желтый цвет служит дополнительным синему, пурпурный — зеленому и сине-зеленый — красному.
Рис. 21.График цветности с обозначением точки, соответствующей насыщенному пурпурному цвету: р(R = 0,5; G = 0; В = 0,5). Угол φ = 45° характеризует пурпурный цветовой тон. Точка р' соответствует цвету с таким же цветовым тоном (φ = 45°), с такой же яркостью (Y = 0,2), но с меньшей насыщенностью: р'(r = 0,286; g = 0,143; b = 0,286). Эти цвета вычитаются один из другого; для этого нужно добавить некоторое количество q белого в более насыщенный (q = 0,5) и разделить новые значения основных цветов на величину (1 + q/Y);
B — Y = 0,3; b — Y = 0,086
R — Y = 0,3; r — Y = 0,086
Теорема II.Равные нулю координаты цветности характеризуют нейтральный серый цвет. Точка, символизирующая нейтральный серый, черный или белый цвета, находится у начала координат графика цветности.
Действительно,
R — Y = B — Y = 0
применяя уравнение D), выводим;
G — Y = 0
и, следовательно, получаем:
R = G = B = Y,
а мы знаем, что цвет, состоящий из равных количеств всех трех основных цветов, по своей природе ахроматичен (закон Ньютона). Следовательно, нейтральный серый цвет полностью характеризуется одной своей яркостью.
Теорема III.Расстояние L от символизирующей цвет точки Р до начала координат О характеризует насыщенность.
Представим себе цвет со следующими составляющими: R>1, G>1 и В>1 при яркости Y>1.
Расстояние от точки Р до начала координат О равно:
Если разбавить этот цвет путем добавления к нему некоторого количества q белого цвета, то его координаты примут следующий вид:
R>1 + q; G + q и B>1 + q при яркости Y>1 + q
Чтобы сравнить эти два цвета, имеющие все равные условия, умножим координаты на величину:
Тогда оба цвета будут иметь одинаковую яркость и будут различаться между собой только насыщенностью. Новые основные цвета будут характеризоваться следующими выражениями:
и
Y>2 = Y>1.
Рассчитаем сигналы цветности:
и
Чем больше добавляют белого, т. е. увеличивают q, или, иначе говоря, разбавляют цвет, тем при одинаковой яркости обозначающая этот цвет точка все больше приближается к началу координат.
Из этого можно сделать вывод, что расстояние от символизирующей цвет точки до начала координат отображает насыщенность цвета.
Однако не следует спешить с выводом, что это расстояние пропорционально насыщенности.
Рассмотрим случай трех одинаково насыщенных основных цветов.
Для чистого красного цвета мы имеем:
(R = 1, G = 0, B = 0);
Y = 0,3 и L = 0,7;