Цивилизация № 1 - страница 60

Шрифт
Интервал

стр.

Если самый маленький квадрат имеет стороны, равные одному царскому кубиту, второй квадрат, полученный на диагонали, будет иметь стороны в один ремен, а третий квадрат, построенный на следующей гипотенузе, будет иметь стороны в двойной царский кубит. Следующим логическим шагом было взять крут, потому что мегалитическая и шумерская системы оперировали с кругами.

Можно нарисовать бесконечное число квадратов и кругов, и они воспроизведут чередующиеся серии размеров кубитов и ременов, удваивая предшествующие величины по мере движения вовне и деля их пополам при движении вовнутрь.



>Квадраты на гипотенузе царского кубита



>Круг внутри кубита



>Сила круга

Все это было элементарно, но выглядело очень красиво и интригующе. Перед нами была сила круга, про которую можно было сказать, что она определила две главные египетские меры. Следующий очевидный вопрос сводился к следующему: «Какова длина кругов, получавшихся в серии царский кубит — ремен?» Ответ оказался очень интересным.

Взяв квадрат со сторонами в одну четверть ремена (18,526 сантиметра), находим, что вмещающий его круг очень близок к окружности длиной в один мегалитический ярд! При 81,31 сантиметра это составляло 99,2 процента мегалитического ярда профессора Тома, который встречается на Британских островах. Следующий квадрат имеет стороны в полкубита, следующий за ним — в полремена; круг, вмещающий этот квадрат, имеет окружность длиной в два мегалитических ярда. Между квадратом со стороной полремена и окружностью вокруг него длиной в один мегалитический ярд существует некоторое расхождение, но мы должны были помнить, что качание маятника имеет обратное отношение к величине силы тяготения, которая уменьшается с приближением к экватору и укорачивает маятник с тем же периодом качания. Это значит, что любой, следующий правилу мегалитического ярда, получит на широте пирамид заметно иной результат, чем, к примеру, на Оркни. Мегалитический ярд Александра Тома был средней величиной, полученной в результате всех его измерений, произведенных на мегалитических памятниках от северной Шотландии до Бретани, и большинство были сделаны на северных памятниках. Мы пришли к выводу, что те крошечные расхождения в имеющихся данных больше, чем несоответствия, найденные в принципе царского кубита и ремена, определенных с помощью мегалитического маятника.

Длина мегалитического ярда, определенного в Египте по методу мегалитического маятника, будет равна 82,7 сантиметра. Это показывает, что метод маятника для воспроизводства меры длины был, вероятно, предназначен для применения только на Британских островах и близких территориях. На этой же южной широте тот же процесс не приводит к получению правильной геодезической меры. Однако для того, чтобы в серии ремен — кубит длина окружности круга равнялась теоретическому египетскому мегалитическому ярду, царский кубит должен был бы равняться 52,648 сантиметра, меньше чем на полпроцента расходясь с расчетом Стеччини.

Когда Питер Харвуд проверял наши выкладки с точки зрения научной точности, он был очень удивлен и даже поражен нашими результатами. Питер проделал огромную работу, указав на ряд ошибок в наших подсчетах и обратив наше внимание на моменты, мимо которых мы прошли. Читая раздел о возможном применении мегалитического ярда для определения царского кубита, он сказал, что мы, по-видимому, обозначили существенное открытие, касавшееся пирамиды Хуфу, которое мы на самом деле упустили. Он напомнил нам об опубликованной в 1859 году книге Джона Тейлора «Великая пирамида», где автор отметил, что если разделить высоту пирамиды на удвоенный размер ее основания, то в результате получится число пи. Одни полагали, что это показывает, что коэффициент, который мы сейчас называем числом пи, являлся, по всей вероятности, священным числом египтян, другие давали этому явлению более прозаическое объяснение.

Критики теории «священного пи» указывали на то, что если сделать колесо с диаметром, являющимся подразделением высоты пирамиды, и прокатить колесо вдоль сторон ее основания, замерив длину каждой из них числом оборотов колеса, то обнаружится, что высота и стороны автоматически будут находиться между собой в отношении пи, о чем строители даже не подозревали.


стр.

Похожие книги