Во-вторых, проблемой является наша точка наблюдения. Спектроскопия измеряет доплеровское смещение, то есть круговое движение навстречу наблюдателю – или от него. В полной мере этот эффект проявляется, если мы наблюдаем двойную систему «с торца» – когда орбита перпендикулярна плоскости неба, – поскольку при каждом прохождении орбиты одна звезда движется строго навстречу нам, а другая – строго от нас. Если же двойная система расположена плашмя – орбита лежит в плоскости неба, доплеровский эффект не обнаруживается, поскольку все перемещения происходят в поперечном направлении. Двойные системы в космическом пространстве ориентированы случайным образом, и тут возникает дополнительная сложность – мы не знаем угол наклона. Но есть и плюсы: при всех углах наклонения доплеровское смещение занижает орбитальную скорость, поскольку, как правило, частично движение идет не по лучу зрения. Поэтому, вычисляя массу звезды, астрономы, как правило, могут определить только ее нижнюю границу. Но этого достаточно, поскольку наша цель – доказать, что у невидимого компаньона есть минимальная масса и потому он является черной дырой[78].
Слово «астрономия» ассоциируется у нас с удивительными изображениями, полученными космическим телескопом «Хаббл». Но многие открытия при исследовании Вселенной были сделаны благодаря спектроскопии – методу разложения света на составляющие цвета. Спектр помог Ньютону понять природу света. В начале 1800-х гг. молодой ученый Йозеф Фраунгофер, выросший в приюте под присмотром сурового наставника, едва не погибший при взрыве стекольной фабрики, где он работал, впервые детально рассмотрел солнечный спектр и обнаружил в нем данные, говорящие о химическом составе Солнца. Сто лет спустя группа низкооплачиваемых сотрудниц Обсерватории Гарвардского колледжа занялась просмотром тысяч спектров на фотографических пластинках, чтобы собрать информацию и понять, из чего состоят звезды и каков реальный размер Вселенной[79].
За свою карьеру астронома я просматривал тысячи спектров, и в каждом ждали головоломка или сюрприз. Это ключевой инструмент измерения расстояния до звезды и определения ее химического состава, он дает возможность заглянуть в центры галактик, где протекают мощнейшие процессы. Каракули, возникшие на экране после ночи астрономических наблюдений, нарисованы светом, попавшим в телескоп, разделенным спектрографом на тонкие полосы и падающим на кремниевый полупроводниковый приемник света, или ПЗС-матрицу. ПЗС-матрица обращает фотоны в электроны, а затем – в электрический сигнал, который преобразуется в карту интенсивностей на разных длинах волн.
Однажды ночью на Гавайях на вершине потухшего вулкана Мауна-Кеа (4200 м над уровнем моря) я вел наблюдения через телескоп. Данные ПЗС-матрицы были представлены в виде горизонтальных полос на экране компьютера. Мое внимание привлекла одна бледная полоса. Темные промежутки на цифровом анализаторе спектра указывали на дальнюю галактику, состоящую из тех же элементов, что и Млечный Путь. Я мог представить ее вращение, тип звезд, из которых она состояла, и количество газа в межзвездном пространстве. Красное смещение спектральных линий говорило о том, что галактика находится в 10 млрд световых лет и что этот свет начал свой путь сюда задолго до формирования Земли. Я знал, что, излучая свет, эта тусклая галактика удалялась от Млечного Пути быстрее скорости света из-за стремительного расширения Вселенной вскоре после Большого взрыва. Поскольку Вселенной управляет общий, а не специальный принцип относительности, пространство может расширяться быстрее скорости света! К стыду своему, в тот момент я даже не восхитился тем фактом, что в моем распоряжении были такие данные о Вселенной. Я редко ставил под сомнение логику рассуждения и основы научного метода, ставшие фундаментом всего того, что я знал.
Спектроскопия – ключ к пониманию двойных звезд и их орбит. Она позволяет астрономам достаточно точно измерять массу невидимого компаньона двойной системы – что подтверждает реальность чудовищ Эйнштейна. Существует не так много «патентованных» двойных систем, где невидимый компонент имеет достаточную массу, чтобы являться черной дырой, и любая другая гипотеза их не объясняет. Давайте ближе познакомимся с эталонным объектом – Лебедем Х-1.