Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира - страница 51

Шрифт
Интервал

стр.

Самые внешние слои детекторов ATLAS и CMS – это мюонные детекторы. Мюоны имеют достаточно большой импульс, чтобы пробиться через калориметры. Его можно точно измерить с помощью гигантских магнитных камер, которые их окружают. Эти исследования важны, поскольку мюоны не создаются в результате сильных взаимодействий (так как они лептоны, а не кварки), и лишь в редких случаях – в результате электромагнитных взаимодействий (из-за того, что они такие тяжелые, проще образоваться электронам). Поэтому мюоны обычно возникают в результате слабых взаимодействий или же какого-то еще неизвестного механизма. Любой вариант интересен, и мюоны играют важную роль в поиске бозона Хиггса.

Теперь мы видим, почему конструкция детекторов ATLAS и CMS имеет структуру матрешки. Внутренние детекторы дают точную информацию о траекториях всех заряженных частиц, образовавшихся при столкновениях. Электроны и фотоны ловятся электромагнитным калориметром, где измеряется их энергия. Частицы, участвующие в сильных взаимодействиях, ждет та же участь, только уже в адронном калориметре. Мюоны беспрепятственно пролетают сквозь калориметры и попадают в мюонный детектор, где подвергаются тщательному изучению. Среди известных нам частиц только нейтрино пролетают незамеченными, и об их существовании мы можем судить только по недостающему импульсу. В целом это – гениальная схема, позволяющая выкачать всю возможную информацию из протонных столкновений на БАКе.

Избыток информации

На БАКе банчи протонов сталкиваются 20 миллионов раз в секунду. При каждом пересечении встречных пучков происходят десятки столкновений, так что возникает около миллиарда столкновений в секунду. Каждое столкновение – настоящий фейерверк из множества, до сотни и даже больше, частиц, выстреливающих в детектор. И тонко откалиброванные приборы внутри детекторов собирают точную информацию о том, что каждая из этих частиц делает.

Это очень большой объем информации. Запись единичного события столкновения на БАКе требует примерно одного мегабайта памяти. (А если оценить объем необработанных данных, то получится более 20 мегабайт, но умный алгоритм сжатия превращает их в один мегабайт.) Это объем большой книги, или объем оперативной памяти в операционной системе космического шаттла. Жесткий диск достаточно мощного современного домашнего компьютера может хранить терабайт данных, или миллион мегабайт. Сравните – объем всех книг Библиотеки Конгресса США составляет около 20 терабайт. Можно хранить информацию о миллионе событий, происшедших на БАКе, на одном таком обычном жестком диске. Это, конечно, звучит здорово, пока не вспомнишь, что в секунду происходит сотни миллионов таких событий, и нужно заполнять этой информацией тысячу жестких дисков в секунду. Не слишком удобно, даже если учесть, что ЦЕРН может позволить себе купить лучшие жесткие диски, чем те, что в обычном ноутбуке.

Если не считать БАКа, крупнейшая в мире база данных – по климату – имеется у Международного дата-центра в Германии. Она содержит около 6 петабайт данных или 6000 терабайт. Если записывать все данные, полученные на БАКе, объем этой базы данных был бы превышен за пару секунд. Итак, добро пожаловать в мир Больших Объемов Данных.

Очевидно, что хранение данных, получаемых на БАКе, (а также их передача и анализ) – невероятно серьезная проблема, которую надо решать, используя различные методы. Самый важный из них – одновременно и самый основной – не записывать все данные. Это стоит подчеркнуть: подавляющее большинство данных, собранных БАКом, мгновенно выбрасывается. У ученых нет выбора, поскольку просто нет возможности все это записать.

Вы можете подумать, что экономически эффективее было бы просто уменьшить количество получаемых данных, например, за счет снижения светимости БАКа. Но для физики элементарных частиц этот способ неприемлем – каждое столкновение важно, даже если мы не записали эти данные на диск. Причина в том, что квантовая механика – единственная теория, адекватно описывающая взаимодействия, в которых создаются эти частицы – предсказывает только вероятности определенных результатов. Когда мы сталкиваем два протона друг с другом, мы не знаем заранее, что произойдет в результате этого столкновения, и не можем выбрать интересующий нас сценарий, мы просто принимаем то, что выдаст нам природа. При этом большая часть того, что она выдает, нам не интересна, по крайней мере в том смысле, что это мы уже понимаем. Чтобы получить небольшое количество интересных событий, мы должны создать огромное количество всяких событий и оперативно отобрать из них самородки.


стр.

Похожие книги