Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира - страница 25

Шрифт
Интервал

стр.

Бозон Хиггса является колебанием поля Хиггса, а поле Хиггса дало массу всем массивным элементарным частицам. Так что бозон Хиггса взаимодействует со всеми массивными частицами из нашего «зоопарка» – кварками, заряженными лептонами, а также W– и Z-бозонами. (Вопрос о массах нейтрино до сих пор полностью не закрыт, так что давайте делать вид, что они не взаимодействуют с полем Хиггса, хотя окончательный приговор по их делу еще не вынесен.) На самом деле все происходит наоборот: чем сильнее частица взаимодействует с полем Хиггса, тем большей массой она обрастает при перемещении в этом поле, заполняющем все пустое пространство.

Эта особенность бозона Хиггса – его взаимодействие с частицей тем сильнее, чем она массивнее – имеет решающее значение, когда дело доходит до изучения этого экзотического зверя на БАКе. Сам бозон Хиггса – тяжелая частица, и даже когда он рождается в какой-то реакции, мы не в состоянии непосредственно его увидеть, поскольку он очень быстро распадается на другие частицы. Мы знаем, что скорости его распада в разных реакциях разные: с некоторой вероятностью он будет распадаться, например, на W-бозоны, с другой – на нижние кварки, с третьей – на тау-мезоны и так далее. И эти значения вероятностей распада не произвольны – физики точно знают, как бозон Хиггса должен взаимодействовать с другими частицами (потому что знают массу каждой из них), поэтому можно достаточно точно вычислить ожидаемую вероятность различных видов распадов.

Но в действительности ученые очень хотят ошибиться. Конечно, это большая победа – обнаружить бозон Хиггса, но еще больше хочется найти что-то новое и удивительное. Поиск невидимых частиц, которые трудно создать и которые быстро распадаются на другие частицы, – сложная задача. Она требует терпения, точности в измерениях и тщательного статистического анализа. Хорошая новость состоит в том, что законы физики строги – предсказания того, что мы должны найти, не могут быть истолкованы двояко. Если окажется, что бозон Хиггса отличается от ожиданий ученых, это будет явным признаком того, что Стандартная модель дала сбой, и нам, наконец, открылось окно в новую физику.

Глава 4

История ускорителя

Мы узнаем об истории странного увлечения – сталкивать частицы друг с другом при все более высоких энергиях.


Когда мне было десять лет, в нашей местной библиотеке в Нижнем Баксе, штат Пенсильвания, я наткнулся на научный отдел, и чтение собранных там книг стало моим любимым занятием. Особенно мне нравились книги по астрономии и физике. Одной из книг, которую я штудировал с особой тщательностью, был скромный том под названием «Физика высоких энергий», написанный Хэлом Хеллманом. Я начал изучать эту книгу в конце 1970-х, а написана она была в 1968-м, то есть до того, как была сформулирована Стандартная модель, когда «кварки» еще были экзотическими и страшноватыми теоретическими моделями. Но адроны – частицы, которые, как мы теперь знаем, состоят из кварков и глюонов, – уже были обнаружены: в журнале High Energy Physics было полно четких фотографий треков этих частиц, и в каждой угадывался мимолетный проблеск тайны природы.

Многие из этих фотографий были сделаны на громадном Беватроне – одном из главных ускорителей частиц, работавшем в 1950-1960-е годы. Беватрон был построен в Беркли, в штате Калифорния, но его название произошло не от Беркли, а от слов Billion Electron Volt (биллион, или по-русски миллиард, электронвольт), то есть максимальной энергии, которой удалось добиться на этом ускорителе. (Позже мы расскажем, что электронвольт (эВ) является непонятной, но очень популярной в физике элементарных частиц единицей энергии. Одному миллиарду электронвольт соответствует приставка гига-, то есть один миллиард электронвольт – один ГэВ, а не БэВ, но в то время американцы чаще использовали это обозначение, и к тому же название «Геватрон» казалось им не очень благозвучным. Остановились на названии «Беватрон».)

Беватрон поучаствовал в двух нобелевских открытиях: в 1959 году премию получили Эмилио Сегре и Оуэн Чемберлен за обнаружение антипротона, а в 1968 году – Луис Альварес за открытие огромного числа новых частиц, которые и сосчитать-то трудно – всех этих ужасных адронов. Некоторое время спустя тот же Альварес и его сын Уолтер, обнаружив аномально высокие концентрации иридия в геологических пластах, образовавшихся в период исчезновения динозавров, первыми доказали, что наиболее вероятная причина этого феномена – столкновение Земли с астероидом.


стр.

Похожие книги