Цепная реакция идей - страница 26

Шрифт
Интервал

стр.

Здания комплекса Института физических проблем строились под непосредственным наблюдением П.Л. Капицы в месте, выбранном им самим. Этот участок представлялся идеальным для возведения научно-исследовательского института; Капице казалось, что здесь институт всегда будет достаточно изолирован от внешней жизни.

Но этот прогноз оказался справедливым всего на 20 лет. Теперь Институт физических проблем окружили громадные дома, рядом проходит одна из самых оживленных магистралей Москвы — Ленинский проспект. Трудно представить себе более оживленный район города, чем тот, который примыкает прямо к институту. И только с тыла его надежно охраняет Москва-река. Сотни автобусов, троллейбусов, автомобилей проходят теперь в непосредственной близости от института. Правда, экспериментальная техника значительно усовершенствовалась, и точные приборы могут действовать, несмотря на внешние сотрясения, электрические разряды и другие помехи.

Первые экспериментальные работы Капицы в институте относятся к изучению некоторых физических явлений в сверхсильных магнитных полях более 300 тысяч эрстед. Он также занимается разработкой методов и техники ожижения водорода и гелия и проводит серию экспериментов при низких температурах. Впоследствии они увенчались крупным открытием.

Капица создает новый тип ожижителей, применив в них вместо детандера, т.е. поршня, турбодетандер — турбину. Этому предшествовало серьезнейшее исследование работы высокооборотных турбодетандеров и решение других сложных задач.

Компактные турбодетандеры Капицы имели высокий коэффициент полезного действия. Применение таких турбодетандеров позволяло также получать большие количества газообразного кислорода из воздуха. Эти работы, в которых проявился многогранный талант Капицы как ученого-физика в инженера, позволили создать новые методы ожижения и разделения газов. Таким образом, существенно изменилось развитие техники получения больших количеств кислорода. Чисто технологическими проблемами получения кислорода Капице пришлось заняться в годы второй мировой войны.

Жидкий гелий был впервые получен голландским физиком лауреатом Нобелевской премии Гейке Камерлинг-Оннесом в начале века. К тому времени уже удалось ожижить все другие газы, в том числе инертные, кроме гелия, оказавшегося самым «неподдатливым» для ожижения. Гелий превращается в жидкость при температуре, близкой к абсолютному нулю, который соответствует — 273,13° Цельсия.

Жидкий гелий сам по себе чрезвычайно интересный объект для изучения. Он служит холодильным агентом для всех исследований, проводимых вблизи абсолютного нуля. В отличие от всех известных газов жидкий гелий не переходит в твердое состояние даже при температурах вплоть до тысячных долей градуса от абсолютного нуля. Его можно превратить в твердое тело только при давлении, начиная от 25 атмосфер. Эти краткие сведения позволяют объяснить то, что многие физики, начиная от самого Камерлинг-Оннеса, с большим увлечением исследовали жидкий гелий. Они надеялись, что именно здесь можно открыть совершенно неожиданные явления, не существующие в обычных условиях.

Одним из блестящих подтверждений этих надежд было открытие самим Камерлинг-Оннесом в своей Лейденской лаборатории существования двух состояний жидкого гелия, в связи с чем и приняты два названия: гелий-I и гелий-II Экспериментально полученные данные глубоко противоречили теоретическим представлениям о теплопроводности. Иначе говоря, объяснить столь высокую теплопроводность с помощью общепринятого механизма теплопроводности оказалось невозможным. Но тепло в жидкостях и газах может передаваться еще посредством так называемых конвекционных потоков.

Если интенсивную передачу тепла в гелии-II нельзя объяснить с точки зрения обычного механизма теплопроводности, то здесь, вероятно, происходит как раз конвекционная передача тепла. Так думал Капица. Он предположил, что в гелии-II легко возникают потоки жидкости, чем и объясняется чрезвычайно большая способность его переносить тепло. Капица подсчитал, что интенсивная передача тепла могла осуществляться только такими конвекционными потоками, которые должны течь с необычной легкостью. Поэтому он предположил (по аналогии со сверхпроводимостью, давно открытой Камерлинг-Оннесом), что гелий-II при сверхнизких температурах представляет «чрезвычайно текучую, т.е. такую жидкость, которая не имеет вязкости».


стр.

Похожие книги