Царство количества и знамения времени - страница 9

Шрифт
Интервал

стр.

Возражение, что в исходной точке этой теории лежит "пустое пространство", не имеет силы, так как, во-первых, это приводит нас к концепции содержащего без содержимого, и к тому же пустота не имела бы в нашем проявленном мире никакого места, потому что сама она не есть возможность проявления,[18] и во-вторых, поскольку Декарт сводил природу тел целиком к протяженности, то он должен был полагать, что их присутствие ничего не добавляет в действительности к тому, что есть протяженность сама по себе, и действительно, различные свойства тел суть для него лишь простые модификации протяженности; но в таком случае, откуда могут эти свойства прийти, если они некоторым образом не присущи самой протяженности, и как они могли бы быть ей присущи, если бы ее природа была лишена качественных элементов? Это было бы противоречиво, и по правде говоря, мы не осмеливались бы утверждать, что это противоречие у Декарта, как, впрочем, и других тоже, не содержится имплицитно; он, как и более поздние материалисты, которые, конечно, больше чем по букве имеют право ссылаться на него, в конечном счете хочет, как представляется, извлечь «плюсы» из «минусов». По сути, сказать, что тело есть только лишь протяженность, понимая ее количественно, значит сказать, что его поверхность и объем, отмеривающий занимаемую им протяженность, суть само тело со всеми его свойствами, что явно абсурдно; если же это понимать иначе, то следует предположить, что сама протяженность есть нечто качественное, и тогда она больше не может служить основанием для исключительно «механицистских» теорий.

Но если эти соображения показывают несостоятельность картезианской физики, то их тем не менее еще недостаточно для того, чтобы четко установить качественный характер протяженности; на самом деле, можно было бы сказать, что если природа тел и не сводится к протяженности, то они именно из нее извлекают свои количественные элементы. Но здесь сразу возникает следующее соображение: среди телесных определений, бесспорно представляющих собою чисто пространственный порядок и, следовательно, могущих рассматриваться как модификации протяженности, есть не только величина тел, но и их расположение; является ли оно чисто количественным? Сторонники редукции к количеству, несомненно, скажут, что взаиморасположение различных тел определено через их дистанции, и что дистанция — это, конечно, количество: это протяженное количество, которое их разделяет, является величиной, как и протяженное количество, занимаемое ими; но достаточно ли этой дистанции на самом деле для определения расположения тел в пространстве? Есть еще нечто, что следует учитывать по существу. Это — направление, согласно которому дистанция должна отсчитываться; но с количественной точки зрения направление должно быть безразлично, потому что в этом отношении пространство может рассматриваться только как однородное, а это предполагает, что различные направления ничем не отличаются одно от другого; если же направление действительно присуще расположению (ситуации) и если оно, очевидно, так же, как и дистанция, является чисто пространственным феноменом, то, следовательно, в самой природе пространства есть нечто качественное.

Чтобы еще больше убедиться в этом, мы оставим в стороне физическое пространство и пространство тел, чтобы рассмотреть только геометрическое пространство в собственном смысле слова, которое, конечно же, и есть пространство, сведенное к самому себе, если можно так сказать; обращается ли реально геометрия, изучая это пространство, к чему-либо другому, кроме понятий строго количественных? В данном случае, разумеется, речь идет о профанной современной геометрии, и сразу же добавим, что если в ней еще и сохранилось нечто, не сводимое к количеству, то не следует ли непосредственно из этого, что в сфере физических наук еще более незаконно и невозможно претендовать на то, чтобы все сводилось к нему? Мы не будем здесь говорить даже о том, что касается взаимного расположения, потому что оно играет достаточно заметную роль только в некоторых специальных областях геометрии, и строго говоря, их можно не рассматривать как составную часть чистой геометрии;


стр.

Похожие книги