Битва при черной дыре - страница 47

Шрифт
Интервал

стр.

и где-то находится. Информация в этой книге — это прямоугольный том, размером 25 сантиметров на 15 сантиметров на 2,5 сантиметра, то есть 25x15x2,5 или примерно 940 кубических сантиметров[65]. Сколько битов информации скрыто между ее обложками? В печатной строке хватает места примерно на 70 символов — букв, знаков пунктуации и пробелов. При 37 строках на странице и 350 страницах это будет почти миллион символов.

Клавиатура моего компьютера содержит около 100 символов, включая буквы верхнего и нижнего регистра, цифры и знаки пунктуации. Это означает, что число различных сообщений, которые могут содержаться в этой книге, — около сотни, перемноженной на себя миллион раз, другими словами —100 в миллионной степени. Это количество — колоссальное, кстати, число — можно получить, возведя двойку в степень около 7 миллионов. Таким образом, книга содержит примерно 7 миллионов битов информации. Иначе говоря, если бы я писал книгу азбукой Морзе, мне потребовалось бы 7 миллионов точек и тире. Поделив их на объем книги, получаем примерно 7400 битов на кубический сантиметр. Это плотность информации в данной стопке печатных страниц.

Однажды я прочитал, что великая Александрийская библиотека перед тем, как ее сожгли дотла, содержала триллион битов информации. Хотя она и не относилась к официальным семи чудесам света, библиотека была тем не менее одним из величайших сокровищ Античности. Построенная во времена правления Птолемея I, она, говорят, содержала среди полумиллиона пергаментных свитков копию любого когда-либо составленного важного документа. Неизвестно, кто ее сжег, но мы уверены, что дым унес огромное количество бесценной информации. Но сколько именно? Я полагаю, что на древнем свитке помещалось около пятидесяти современных страниц. Если эти страницы были подобны тем, что вы читаете, то свиток содержал около миллиона битов плюс-минус несколько сотен тысяч. В таком случае библиотека Птолемея могла содержать полтриллиона (1 триллион = 10>12) битов — близко к тому, что я читал.

Потеря этой информации — одно из величайших несчастий, с которым приходится мириться сегодня ученым, исследующим Древний мир. Но могло быть и хуже. Что, если каждый уголок, каждый доступный кубометр был заполнен книгами вроде этой? Я не знаю точно, насколько велика была Александрийская библиотека, но, допустим, 60x30x12 метров, или около 22 тысяч кубических метров, — размер не самого маленького современного общественного здания. Это 22 миллиарда кубических сантиметров. Зная это, легко оценить, сколько битов могло содержаться в здании. При плотности 7400 битов в кубическом сантиметре получается 1,6х10>14 битов. Колоссально.

Но зачем привязываться к книгам? Если каждую книгу сжать до одной десятой ее объема, то можно упаковать в 10 раз больше битов.

Перенос содержания на микрофиши позволит хранить еще больше. А если все книги оцифровать, то еще больше.

Есть ли фундаментальный физический предел объема пространства, необходимого для хранения одного бита? Должен ли физический размер реального бита быть больше атома, ядра, кварка? Можно ли бесконечно делить пространство, наполняя его бесконечным количеством информации? Или существует предел — не практический технологический предел, а вытекающий из глубочайших законов природы?

Наименьший бит

Меньше, чем атом, меньше, чем кварк, меньше даже, чем нейтрино, отдельный бит может быть самым фундаментальным строительным блоком. Без всякой структуры, бит либо есть, либо его нет. Джон Уилер считал, что все материальные предметы состоят из битов информации, и выражал эту идею слоганом: «Суть из бита»[66].

Джон представлял, что бит, будучи самым фундаментальным объектом, имеет самый маленький возможный размер, равный фундаментальному квантовому размеру, открытому Максом Планком более столетия назад. В первом приближении согласно картине, которую держит в голове большинство физиков, пространство можно разделить на крошечные ячейки планковского размера наподобие трехмерной шахматной доски. В каждой ячейке может храниться бит информации. Бит можно изображать как очень простую частицу. Каждая ячейка либо содержит частицу, либо нет. Можно также представлять себе эти ячейки как гигантское поле для игры в крестики-нолики.


стр.

Похожие книги