Битва при черной дыре - страница 37

Шрифт
Интервал

стр.

Студент: Может быть, проблема в том, что я сделал недостаточно бросков? Может быть, мне нужно пойти домой и подбросить монетку миллион раз? Может быть, тогда результат будет лучше? Профессор: Вероятно, нет.

Студент: Профессор, пожалуйста, скажите мне что-нибудь, в чем я могу быть уверен. Но вы все время твердите свое «вероятно». Вы можете мне объяснить, что такое вероятность, но без слова «вероятно»?

Профессор: Гм-гм. Я попробую. Это значит, что я буду удивлен, если «орел» выпадет чаще, чем предполагает допустимая погрешность.

Студент: О господи! Вы хотите сказать, что все, что вы рассказывали нам о статистической механике, квантовой механике и математической вероятности, — все это значит лишь то, что вы будете удивлены, если оно не сработает?

Профессор: Э-э-э…

Если я подброшу монетку миллион раз, то, совершенно точно, «орел» миллион раз не выпадет. Я не азартен, но я настолько в этом уверен, что, не задумываясь, поставил бы на это свою жизнь или свою душу. Да что там душу, я поставил бы на это свою зарплату за целый год. Я абсолютно убежден, что законы больших чисел — то есть теория вероятности — сработают и не дадут меня в обиду. На них основана вся наука. Но я не могу этого доказать и на самом деле понятия не имею, почему они работают. Может быть, именно поэтому Эйнштейн говорил, что Бог не играет в кости. Вероятно, все-таки играет.

Время от времени мы слышим утверждения физиков о том, что Эйнштейн не понимал квантовую механику и потому тратил свое время на наивные классические теории. Я очень сильно сомневаюсь, что это правда. Его аргументы против квантовой механики чрезвычайно изящны, кульминации они достигли в одной из самых сложных и самой цитируемой во всей физической науке статье[53]. Я считаю, что Эйнштейн был обеспокоен теми же вещами, что и занудный студент-тугодум. Как может окончательная теория реальности касаться чего-то столь маловразумительного, как степень нашего удивления относительно исхода эксперимента?

Я продемонстрировал вам некоторые парадоксальные, почти алогичные вещи, которые квантовая механика вываливает на классически настроенный мозг. Но я предполагаю, что вы не вполне удовлетворены. На самом деле я на это надеюсь. Если вы запутались, так и должно быть. Единственное лекарство, которое от этого помогает, — это доза математического анализа и погружение на несколько месяцев в хороший учебник по квантовой механике. Только очень странный мутант или человек, рожденный в очень необычной семье, может быть естественным образом настроен на понимание квантовой механики. Помните, в итоге даже Эйнштейн не смог ее грокнуть.

5

Планк изобретает улучшенный эталонный масштаб

Однажды в стэнфордском кафетерии я заметил группу студентов с моего подготовительного курса физики, которые что-то изучали за столом. «Друзья, чем занимаетесь?» — спросил я. Ответ меня удивил. Они заучивали до последней цифры таблицу постоянных, приведенную на обложке учебника[54]. Таблица наряду с двумя десятками других включала следующие постоянные:


h (постоянная Планка) = 6,626068x10 >34 м>2кг/с

Число Авогадро = 6,0221415x10>23

Заряд электрона = 1,60217646х10>-19 кулона с (скорость света) = 299 792 458 м/с

Диаметр протона = 1,724х10>-15 м

G (гравитационная постоянная) = 6,6742 х10>-11 м>3с>-2кг>-1


На других научных предметах абитурентов натаскивают запоминать огромное количество информации. Они хорошо усваивают физику, но часто пытаются учить ее тем же способом, которым учат психологию. Правда состоит в том, что физика весьма незначительно нагружает память. Я не уверен, что многие физики сумеют назвать большинство из этих постоянных даже по порядку величины.

Отсюда возникает интересный вопрос: почему численные значения этих постоянных столь неуклюжие? Почему бы им не быть простыми числами вроде 2, 5 или даже 1? Почему они все время оказываются то слишком маленькими (постоянная Планка, заряд электрона), то слишком большими (число Авогадро, скорость света)?

С физикой ответ связан слабо, гораздо больше — с биологией. Возьмем число Авогадро. Оно выражает число молекул, содержащихся в определенном количестве газа. Каком количестве? В таком, с которым было удобно работать химикам начала девятнадцатого века; иными словами, это количество, которое помещается в колбе или другом сосуде, более или менее сопоставимом с человеком по размерам. Фактическое значение числа Авогадро больше связано с числом молекул в теле человека, чем с глубокими физическими принципами


стр.

Похожие книги