Белые карлики. Будущее Вселенной - страница 98

Шрифт
Интервал

стр.

Понятно, что температурные флуктуации реликтового излучения обусловлены сложной гаммой причин и в целом отражают физическую историю Вселенной на разных этапах ее существования. Эта история представлена в конкретных космологических моделях, которые отличаются друг от друга численными значениями нескольких параметров. В минимальной версии Стандартной модели их шесть, в расширенных — более десятка (кстати, самым ранним космологическим моделям хватало всего трех параметров). Математический анализ данных, собранных во время наблюдения и измерения этих флуктуаций, позволяет определить эти параметры и на этой основе выбрать наилучшую теоретическую конструкцию, описывающую эволюцию Вселенной.

О том, как это делается, невозможно рассказать на пальцах, хотя вот несколько наглядных примеров. Для теоретического анализа первичных анизотропий реликтового излучения очень важно знать, под каким углом возможно наблюдать область пространства, соответствующую размеру Вселенной в эпоху рекомбинации. Чтобы вычислить его величину, необходимо определиться с космологической моделью. Для плоской Вселенной, которую описывает модель Эйнштейна — де Ситтера, этот угол равен 1,8°, для прочих моделей он имеет другое значение. Барионно-акустические осцилляции имеют максимальную амплитуду на длине волны, по порядку величины равной звуковому горизонту в эпоху рекомбинации. Так как скорость распространения этих колебаний в 1,7 раза меньше скорости света, максимум флуктуаций реликтового излучения в плоской Вселенной Эйнштейна — де Ситтера должен прийтись на угловой размер в 1°. Именно это и показывают наблюдения! Отсюда следует, что мы живем во Вселенной с плоской (или почти плоской) евклидовой геометрией пространства, кривизна которого равна или почти равна нулю. Возможно, это самый важный результат, извлеченный на сегодняшний день из богатейшего информационного резервуара реликтового излучения.

Данные о кривизне космического пространства можно получить и из наблюдений крупномасштабных (на угловых размерах в десятки градусов) осцилляций температур реликтового излучения, где работает интегрированный эффект Сакса — Вольфа. Чем больше кривизна пространства (и, следовательно, чем заметней его неевклидовость), тем сильнее должны изменяться со временем локальные гравитационные потенциалы. А такие изменения как раз и влекут за собой появление вторичной температурной анизотропии, обусловленной этим эффектом. Данные по крупномасштабным осцилляциям подтверждают, что нам выпало обитать в практически плоской Вселенной. Об этом же свидетельствует и угловое распределение акустических температурных пиков, также зависящее от кривизны пространства.

Температурные флуктуации фонового излучения демонстрируют и другие пики с более скромными амплитудами, которые наблюдаются на меньших угловых размерах. Причины их неодинаковы, и они тоже зависят от различных космологических параметров. Например, чем больше во Вселенной барионного вещества, тем выше амплитуда первого пика (и других пиков с нечетными номерами) и тем ниже она для второго, четвертого и прочих четных пиков. На совсем малых масштабах (менее пяти угловых секунд) первичные анизотропии сглаживаются благодаря эффекту Силка.

ВЕЛИКИЙ КОНКОРДАНС И ЕГО ПРЕДЕЛЫ

В нашем столетии львиную долю информации о спектрах реликтового излучения ученые получили с помощью космических обсерваторий WMAP и Planck. Обе станции несли на борту уникальную аппаратуру, которую смело можно назвать техническим чудом космического приборостроения. Кроме того, реликтовое излучение наблюдали с помощью специализированных наземных телескопов нового поколения и приборов, поднятых в стратосферу высотными аэростатами. Каждый из этих экспериментов заслуживает отдельной статьи, а некоторые — даже книги. В совокупности они неизмеримо расширили и уточнили полученные в прошлом веке сведения о реликтовом излучении. В обозримом будущем подобные наблюдения будут продолжаться.

Их главные результаты общеизвестны. Абсолютное большинство специалистов согласно, что космическое пространство на макромасштабах обладает нулевой или почти нулевой кривизной и потому очень точно описывается геометрией Евклида. Общая плотность энергии Вселенной приблизительно на 4,5 % обеспечена обычным (барионным) веществом, на 25 % — холодной (то есть движущейся с небольшими скоростями) темной материей и примерно на 70 % — темной энергией (чью плотность по традиции обозначают заглавной греческой буквой Λ). Очень малую дополнительную долю этой плотности составляют кванты реликтового излучения и звездного света, потоки нейтрино и гравитационные волны. Барионное вещество в основном сосредоточено не в звездах и планетах, а в плазменном наполнении внутригалактического и межгалактического пространства. Эти утверждения составляют основное содержание стандартной космологической модели.


стр.

Похожие книги