Автостопом по мозгу. Когда вся вселенная у тебя в голове - страница 18

Шрифт
Интервал

стр.

Суперспособность использовать мозг, чтобы справляться со всевозможными задачами, стоит нам многих лет обучения. С другой стороны, человек может самостоятельно выбрать, чем ему заниматься: рисовать картины, проектировать космические корабли или вживлять микрочипы в мозг лабораторных животных, чтобы понять, как работают обучение и память. Мы живем в таком удобном и супертехнологичном мире именно благодаря тому, что имеем такой сложный и обучаемый мозг. Человек может добиться поразительных результатов в совершенно разных областях деятельности. Главное — понять, чего именно мы хотим и как можно этого достичь.


Как работают нейроны? Химия и электричество

Рассказ о работе мозга будет неполным без описания того, как устроены и функционируют нервные клетки. Если совсем кратко: нейроны состоят из тел и нервных отростков, которыми соединяются с другими нейронами, и работают на химии и электричестве. Но чтобы было немного понятнее, как устроена работа мозга, все-таки придется добавить несколько технических подробностей.

Основу нервной ткани составляют два типа клеток — нейроны и глия. Нейроны — это главные аналитики и мыслители в нервной системе, глия — это клетки «на подхвате» и система жизнеобеспечения нейронов. Обычно нейроны привлекают к себе намного больше внимания, но без глии работа нейронов была бы просто невозможной: ее клетки обеспечивают нейроны всем необходимым, защищают от угроз, помогают поддерживать энергетический баланс, обеспечивают многими веществами, важными для работы и роста нейронов, а еще они изолируют отростки нервных клеток, образуя миелин, и помогают сигналам распространяться намного быстрее. На 86 миллиардов нейронов в мозге приходится 85 миллиардов глиальных клеток [11], то есть на каждый нейрон приходится по одной глиальной клетке. Эти цифры наглядно показывают, насколько глия важна для правильной работы мозга.


Электричество

Тем не менее за обработку информации в мозге отвечают именно нейроны. У каждого нейрона есть тело и обычно два типа нервных отростков. Дендриты работают с входящей информацией и получают сигналы от других нейронов, а аксоны передают информацию дальше по цепочке к следующим звеньям на пути распространения сигнала. Сигнал распространяется по нейронам в виде импульсов — потенциалов действия — это очень короткое изменение электрического напряжения, которое расходится волнами вдоль поверхности нервных клеток.

Поток сигналов вдоль отростков однонаправленный — только в одном направлении. По дендритам импульсы идут от окончания к телу клетки, а по аксонам наоборот — от тела клетки к окончаниям, которые соединяются с дендритами или телами других нейронов.

Многие нейроны на первый взгляд довольно-таки одномерны: в том смысле, что по сравнению с длиной аксона размерами тела нейрона можно пренебречь. Даже самые упитанные человеческие нейроны не превышают 150 мкм в поперечнике, а нейронный отросток толщиной не более 20 мкм может иметь длину больше метра.

Чтобы передавать информацию на такое расстояние, нужен очень высокоскоростной сигнал. Ни одно химическое вещество не умеет перемещаться по организму с нужной скоростью. А электрические импульсы умеют, и именно они передают сигнал в пределах одного нейрона вдоль нервных окончаний. Электрические импульсы отвечают за скорость передачи сигнала, проводя их от чувствительных окончаний в пятках к мозгу за сотые доли секунды. Иногда скорость — это залог выживания: когда нужно убежать от тигра или догнать антилопу, любое промедление может стоить жизни. Электрические импульсы обеспечивают нервной системе быстродействие, благодаря которому мы можем моментально среагировать на опасность или редкий шанс, выпадающий раз в жизни. В борьбе выживали самые приспособленные — мгновенная реакция на внезапные стимулы однозначно очень адаптивная штука.


Химия

Чтобы передать сигнал от одного нейрона к другому, электрический сигнал превращается в химический. Отросток первой клетки (аксон) образует с отростком (дендритом) второй очень плотный контакт, называемый синапсом. Там из отростка выделяются пузырьки с химическим веществом — нейромедиатором, который связывается с рецепторами, что обычно приводит к изменению электрического потенциала в окончании второго нейрона.


стр.

Похожие книги