Атомный проект. История сверхоружия - страница 18

Шрифт
Интервал

стр.

Предположение требует доказательств. Супруги Жолио-Кюри попросили химиков рекомендовать им такой способ обнаружения фосфора в веществе, чтобы его присутствие можно было обнаружить в течение нескольких минут. Но те только разводили руками: как делать настолько молниеносный анализ, они не знали. Пришлось разрабатывать такой способ самим. Супруги научились менее чем за три минуты определять присутствие фосфора и доказали, что радиоактивные ядра, возникающие в алюминии, действительно являются ядрами атомов фосфора.

Затем физики сделали еще один шаг: они сумели показать, что под действием альфа-частиц из ядер атомов алюминия образуются не встречающиеся в природе ядра атомов фосфора – новый «радиоактивный изотоп» фосфора. Количество искусственно полученных атомов изотопа фосфора в результате радиоактивного распада уменьшалось вдвое примерно через каждые три минуты, и излучение довольно быстро прекращалось.

Сделанное открытие чрезвычайно заинтересовало Фредерика и Ирен Жолио-Кюри. Они решили выяснить: а нельзя ли создать радиоактивные изотопы других элементов? И у них получилось! Стало ясно, что радиоактивные изотопы элементов, никогда не существовавшие в природе, могут быть созданы руками человека. Доклад об этой работе был представлен 15 января 1934 года.

Уже через год после открытия искусственной радиоактивности учеными было получено более пятидесяти радиоактивных изотопов. Они стали широко использоваться для исследований в области ядерной физике. По желанию можно было получить изотопы, испускающие различные виды излучений: нейтроны, альфа-, бета– и гамма-излучение, – причем любой интенсивности и с различными энергиями испускаемых частиц.

Золотые рыбки

В 1934 году в Римском университете собралась группа молодых и амбициозных физиков, которых прозвали «мальчуганами». Возглавил ее Энрико Ферми.

Группа плотно занялась нейтронной физикой. Двое «мальчуганов», Бруно Понтекорво и Эдоардо Амальди, бомбардируя нейтронами различные материалы и замеряя искусственную радиоактивность, обнаружили большую странность. Оказывается, величина приобретенной веществами радиоактивности зависела от того, какие предметы находились рядом с облучаемым материалом. Когда облучаемый образец находился в свинцовом ящике, то у него наблюдалась гораздо меньшая радиоактивность, чем у него же во время облучения на деревянном столе. Энрико Ферми этот факт сразу навел на серьезные размышления. Но пока ученый предпочитал о них не рассказывать. Он только посоветовал коллегам поместить облучаемый образец в парафин и посмотреть, что получится.

Они так и поступили. Взяли кусок парафина, выдолбили в нем ямку, а в нее поместили облучаемый образец – серебряный стаканчик, внутри которого находился источник нейтронов. После облучения проверили радиоактивность серебряного стаканчика. Произошло чудо: парафин в сто раз увеличил радиоактивность стаканчика!

Опыт убедил Энрико Ферми в правильности его догадки. Когда быстрый нейтрон сталкивается с ядром, то его поведение после столкновения сильно зависит от того, с каким ядром он столкнулся – легким или тяжелым. Если ядро тяжелое, то нейтрон ударится о него, как о неподвижную стенку, и отскочит почти с той же энергией, какую имел до столкновения, – примерно как бильярдный шар, ударившийся о бортик. Если же ядро легкое, то нейтрон передаст ему часть своей энергии. Чем легче ядро, тем больше энергии потеряет нейтрон.

Предельный случай – когда ядро имеет массу, равную массе нейтрона. Например, ядро атомов водорода, которое содержит единственный протон. Его масса примерно равна массе нейтрона. Ударившись о такое ядро, нейтрон может потерять всю свою энергию. Опять вспомним бильярдные шары: при лобовом столкновении двух одинаковых шаров налетающий шар останавливается, а другой отскакивает со скоростью налетевшего на него шара. А что происходит, если нейтрон пролетает через вещество с меньшей скоростью? Тогда он с большей вероятностью может быть захвачен каким-либо ядром. Ведь время нахождения нейтрона вблизи ядра при уменьшении скорости увеличивается, и, следовательно, увеличивается время взаимодействия между ними. Значит, чем легче ядра атомов вещества, тем большее количество пролетающих через него нейтронов потеряет энергию и будет захвачено ядрами. И тем больше будет радиоактивность облучаемого вещества.


стр.

Похожие книги