Мы замечаем, что все эти энергии в точности те же, что и раньше, только переставлены. Итак, смотря по тому, какое из отношений больше, грузик либо медленно поднимается, либо медленно опускается. Конечно, на самом деле он непрерывно ходит туда-сюда, покачивается, но мы говорим об усредненном поведении.
Положим, что при определенном весе вероятности окажутся равными. Тогда привесим к нити бесконечно легкий грузик. Весь груз медленно пойдет вниз, и машина будет совершать работу, энергия будет откачиваться от храповика и пересылаться вертушке. Если же убрать часть груза, неравновесность перекинется на другую сторону. Груз поднимается, тепло отбирается от вертушки и поставляется шестерне. Мы попадаем в условия обратимого цикла Карно благодаря тому, что груз выбран как раз так, чтобы обе вероятности были равны. Это условие таково: (e+Lq)/T>1=e/T>2. Пусть машина медленно тянет груз вверх.
Таблица 46.1 · ОПЕРАТИВНАЯ СВОДКА ДЕЙСТВИЙ ХРАПОВИКА И СОБАЧКИ
Энергия Q>lотбирается от лопастей, а энергия Q>2доставляется шестерне, и эти энергии находятся в отношении (e+Lq)/e. Когда мы опускаем груз, то опять Q>1/Q>2=(e+Lq)/e. Итак (табл. 46.1), мы имеем
Q>1/Q>2=T>1/T>2. Далее, полученная работа относится к энергии, взятой у вертушки, как Lq к Lq+e, т. е. как (T>1-Т>2)/Т>1. Мы видим, что наше устройство, работая обратимо, ни за что не сможет высосать работы больше, чем позволяет это отношение. Это тот вывод, которого мы и ожидали на основе доказательства Карно, а одновременно и главный результат этой лекции.
Однако мы можем использовать наше устройство, чтобы понять еще кое-какие явления, даже неравновесные, лежащие вне области применимости термодинамики.
Давайте подсчитаем теперь, как быстро наш односторонний механизм будет вращаться, если все его части одинаково нагреты, а к барабану подвешен грузик. Если мы потянем чересчур сильно, могут произойти любые неприятности. Собачка соскользнет вдоль храповика, пружинка лопнет или еще что-нибудь случится. Но предположим, мы тянем так осторожно, что все работает гладко. В этих условиях верен вышеприведенный анализ вероятностей поворота храповика вперед или назад, и нужно только учесть равенство температур. С каждым скачком валик поворачивается на угол 9, так что угловая скорость равна величине 9, помноженной на вероятность одного из этих скачков в секунду. Ось поворачивается вперед с вероятностью (1/t)ехр[-e+Lq)/kT], а назад она поворачивается с вероятностью (1/t)ехр(-e/kT). Угловая скорость равна
График зависимости w от L показан на фиг. 46.2.
Фиг. 46.2. Угловая скорость храповика как функция вращательного момента.
Мы видим, что, когда L положительно, результат один, когда отрицательно — совсем другой. Если L растет, будучи положительным, что бывает, когда мы хотим повернуть храповик назад, скорость вращения назад близка к постоянной величине. А когда L становится отрицательным, w поистине «рвется вперед», так как у e показатель степени огромен! Таким образом, угловая скорость, вызываемая действием разных сил, весьма несимметрична. Пойти в одну сторону легко: мы получаем большую угловую скорость от маленькой силы. Идя в обратную сторону, мы можем приложить много усилий, а вал все же будет двигаться еле-еле.
Такое же положение возникает в электрическом, выпрямителе. Вместо силы там имеется электрическое поле, а взамен угловой скорости — сила тока. Для выпрямителя напряжение тоже не пропорционально сопротивлению, наблюдается та же несимметричность. Анализ, проделанный нами для механического выпрямителя, годится и для электрического. Вид полученной выше формулы типичен для зависимости пропускной способности выпрямителя от напряжения.
Уберем теперь все грузики и обратимся к первоначальному механизму. Если бы Т>2было меньше Т>1, храповик вертелся бы вперед. Этому поверит любой. Но вот во что трудно поверить сразу, так это в обратное. Если T>2больше T>1, храповик вращается назад! Динамический храповик с избытком теплоты внутри вертится назад, потому что собачка храповика отскакивает. Если собачка в какой-то момент находится на наклонной плоскости, она толкает эту плоскость в сторону подъема. Но это происходит