13,8. В поисках истинного возраста Вселенной и теории всего - страница 27

Шрифт
Интервал

стр.

В середине 1920-х годов все теоретические и экспериментальные данные были за то, что, по классическим законам физики (выработанным в доквантовую эру), альфа-частицы внутри ядра не могут иметь достаточно энергии, чтобы оторваться от него. И именно Гамов понял, что квантовые принципы меняют эти законы. Он указал, что частицы, имеющие волновую природу, нестабильны и у них нет четких границ. Когда альфа-частица приближается к верхнему краю кратера, где его стенка максимально тонкая, ее волны могут проникнуть сквозь эту стенку и ощутить силу отталкивания. Эта сила способна протащить всю частицу-волну сквозь стенку; ныне этот процесс известен как туннельный эффект, или туннелирование. Принципы квантовой физики позволяют просчитать, насколько вероятен этот эффект для различных типов ядер, и такие расчеты подтверждаются экспериментально.

Это было похоже на образ из мультфильмов, как будто над головами физиков всего мира одновременно зажглись лампочки – эврика! Если альфа-частицы могли вырваться из ядра таким образом, хотя классическая теория утверждает, что для этого у них недостаточно энергии, то, возможно, протоны способны аналогичным образом туннелировать в ядро и наращивать его до ядра гелия, высвобождая альфа-частицу и энергию, и это может происходить внутри Солнца и других звезд, хотя по классической теории там недостаточно высокая температура! Можно вообразить, что две частицы-волны сблизились до такой степени, что их края соприкоснулись, почувствовали мощную силу притяжения и заключили друг друга в объятия. Оставалось лишь уточнить детали процесса. Но это было нелегко. Идея Гамова была опубликована в 1928 году, прежде чем работа Пейн получила широкое признание, и поначалу астрофизики пытались решить задачу, думая, что звезды преимущественно состоят из намного более тяжелых элементов, чем водород.

Глава 3

7,65

Как образовались «металлы»

В 1928 году самое точное, что физики могли сказать о строении ядра атома гелия (альфа-частице), – это что она состоит из четырех протонов и двух электронов, удерживаемых вместе сильным притяжением. Четыре протона были нужны, чтобы объяснить массу альфа-частицы, но в таком случае ядро выходило бы положительно заряженным в два раза сильнее, чем на самом деле. Чтобы сбалансировать уровень заряда, нужны были два легких, но отрицательно заряженных электрона. И только в 1932 году Джеймс Чедвик[83], работавший в Кавендишской лаборатории, открыл незаряженные частицы, известные в наши дни как нейтроны, обладавшие несколько большей массой, чем протоны. Тогда сразу стало ясно, что ядра гелия на самом деле состоят из двух протонов и двух нейтронов, удерживаемых вместе тем же притяжением, а вот чтобы дополнить ядро гелия до целого атома, необходимо добавить два электрона, которые будут находиться относительно далеко от ядра, удерживаемые электрическими силами, ограниченными принципами квантовой физики. Но первые шаги к пониманию слияния ядер – точнее, процессов, удерживающих протоны вместе и обеспечивающих образование гелия и более тяжелых элементов, – были сделаны еще до прорыва Чедвика.

Открытие Гамовым туннелирования вдохновило физиков Роберта Аткинсона и Фридриха (Фрица) Хоутерманса[84]. В работе, опубликованной в 1929 году, они писали: «Не так давно Гамов продемонстрировал, что положительно заряженные частицы способны проникать в атомное ядро, даже несмотря на то что традиционные представления считают их энергию недостаточной для этого». Далее они математически рассчитывают, как тяжелое ядро может таким способом вобрать в себя поочередно четыре протона[85], а затем испустить целую альфа-частицу. Их ошибка, если так можно выразиться, крылась в представлении, что состав Солнца аналогичен составу Земли: что вокруг множество тяжелых ядер, в которых мог происходить аналогичный процесс. Они, как и все ученые того времени, не знали, что ключ к разгадке в непосредственном взаимодействии протонов друг с другом. Но этот пробел в их концепции гораздо менее важен, чем то, что им удалось представить расчеты. С их помощью можно было выяснить, какого количества взаимодействий ядер в секунду было бы достаточно для поддержания сияния Солнца. Число оказалось на удивление небольшим, что, соответственно, делает очень значительным потенциальный возраст такой звезды, как Солнце.


стр.

Похожие книги