Роман с Data Science. Как монетизировать большие данные

Роман с Data Science. Как монетизировать большие данные
Название: Роман с Data Science. Как монетизировать большие данные
Автор:
Жанры: О бизнесе популярно / Базы данных
Входит в цикл: IT для бизнеса
Страниц: 107
Тип издания: Фрагмент
Описание книги Роман с Data Science. Как монетизировать большие данные:

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru. Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики. В формате PDF A4 сохранен издательский макет.

Читать Роман с Data Science. Как монетизировать большие данные онлайн бесплатно


Иллюстрации Владимира Вышванюка


Информация, содержащаяся в данной книге, получена из источников, рассматриваемых издательством как надежные. Тем не менее, имея в виду возможные человеческие или технические ошибки, издательство не может гарантировать абсолютную точность и полноту приводимых сведений и не несет ответственности за возможные ошибки, связанные с использованием книги. Издательство не несет ответственности за доступность материалов, ссылки на которые вы можете найти в этой книге. На момент подготовки книги к изда-нию все ссылки на интернет-ресурсы были действующими.


© ООО Издательство «Питер», 2021

© Серия «IT для бизнеса», 2021

© Роман Зыков, 2021

Об авторе

Роман Владимирович Зыков, 1981 года рождения, в 2004 году получил степень бакалавра, а затем магистра прикладной физики и математики в МФТИ (Московском физико-техническом институте).

В 2002 году начал свой карьерный путь в аналитике данных (Data Science) в качестве технического консультанта в компании StatSoft Russia, российского офиса одноименной американской компании-разработчика пакета статистического анализа данных STATISTICA. В 2004 году был принят на должность руководителя аналитического отдела интернет-магазина Ozon.ru, где создавал аналитические системы с нуля, в том числе веб-аналитику, аналитику баз данных, управленческую отчетность, внес вклад в систему рекомендаций.

В 2009 году консультировал ряд проектов инвестиционного фонда Fast Lane Ventures и гейм-индустрии.

В 2010 году возглавил отдел аналитики в интернет-ритейлере Wikimart.ru.

В конце 2012 года стал сооснователем и совладельцем маркетинговой платформы для интернет-магазинов RetailRocket.ru. На текущий момент компания является безусловным лидером на рынке в России и успешно работает на рынках Чили, Голландии, Испании и других.

С 2007-го вел блог «Аналитика на практике» (KPIs.ru – ныне не существует), где евангелизировал анализ данных в применении к бизнес-задачам в электронной коммерции. Выступал на отраслевых конференциях, таких как РИФ, iMetrics, Gec 2014 вместе с Аркадием Воложем (Yandex), бизнес-конференциях в Дублине и Лондоне, в посольстве США (AMC Center), университете Сбербанка. Печатался в технологическом прогнозе PwC, ToWave, «Ведомостях», «Секрете фирмы».

В 2016 году прочитал мини-лекцию в концертном зале MIT в Бостоне о процессах тестирования гипотез.

В 2020 году был номинирован на премию CDO Award.

Благодарности

Я посвящаю эту книгу своей жене Екатерине и моим детям – Аделле и Альберту. Катя придала мне решимости написать книгу и приняла большое участие в редактировании текстов. За что я ей очень благодарен.

Также я благодарен своим родителям, которые вырастили и воспитали меня в очень непростое время. Отдельная благодарность моему отцу Владимиру Юрьевичу за то, что привил мне любовь к физике.

Я благодарен всем на моем долгом пути в аналитику данных. Илье Полежаеву, Большакову Павлу и Владимиру Боровикову за грамотное руководство, когда я только пришел в StatSoft. Бернару Люке, тогда генеральному директору Ozon.ru, а также коллегам в Ozon.ru: Александру Перчикову, Александру Алехину, Валерию Дьяченко – за совместное написание рекомендательной системы. Марине Туркиной и Ирине Коткиной – с вами было замечательно сотрудничать. Основателям проекта Wikimart.ru Камилю Курмакаеву и Максиму Фалдину – те знакомства в Калифорнии очень сильно повлияли на меня. Александру Аникину – ты очень крутой был тогда, а сейчас вообще звезда. Основателям проекта Ostrovok.ru – Кириллу Махаринскому и Сержу Фаге, а также Жене Курышеву, Роману Богатову, Феликсу Шпильману – с вами очень интересно было работать, я узнал много нового о разработке.

Я благодарен сооснователям Retail Rocket – Николаю Хлебинскому и Андрею Чижу. Отдельная благодарность венчурному фонду Impulse VC (Кириллу Белову, Григорию Фирсову, Евгению Пошибалову) – за то, что поверили в нас. Всем сотрудникам Retail Rocket, особенно моим ребятам Александру Анохину и Артему Носкову – вы лучшие.

Я благодарен психологу Елене Клюстер, с которой работаю уже несколько лет, за осознание своих собственных границ и своих истинных желаний. Благодарен Андрею Гузю, моему тренеру по плаванию, за аналитический подход к тренировкам. Оказывается, так можно, и не только профессионалам, но и любителям.


Похожие книги